基于小波-支持向量回归-移动平均的服务器负载预测

Shuping Yao, Chang-zhen Hu
{"title":"基于小波-支持向量回归-移动平均的服务器负载预测","authors":"Shuping Yao, Chang-zhen Hu","doi":"10.1109/ISDA.2006.253720","DOIUrl":null,"url":null,"abstract":"To improve the predication accuracy for server load, a novel predication method was proposed based on the integration of wavelet analysis and support vector regression. The server load time series, which is nonlinear and non-stationary, was decomposed and then, reconstructed into several branches by the wavelet method. Of these branches, the lowest scale high frequency signal was forecasted by moving average model, the others were predicted by support vector regression respectively and the final value was the combination of these predicted results. Theoretical analysis and experiment results show that wavelet analysis can decompose the original load series into several time series that have simpler frequency components and are easier to be forecasted; support vector regression has greater generation ability and guarantees global minima for given training data, it performs well for non-stationary time series prediction. So the method has higher predictive precision than traditional prediction approaches","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prediction of Server Load Based on Wavelet-Support Vector Regression-Moving Average\",\"authors\":\"Shuping Yao, Chang-zhen Hu\",\"doi\":\"10.1109/ISDA.2006.253720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the predication accuracy for server load, a novel predication method was proposed based on the integration of wavelet analysis and support vector regression. The server load time series, which is nonlinear and non-stationary, was decomposed and then, reconstructed into several branches by the wavelet method. Of these branches, the lowest scale high frequency signal was forecasted by moving average model, the others were predicted by support vector regression respectively and the final value was the combination of these predicted results. Theoretical analysis and experiment results show that wavelet analysis can decompose the original load series into several time series that have simpler frequency components and are easier to be forecasted; support vector regression has greater generation ability and guarantees global minima for given training data, it performs well for non-stationary time series prediction. So the method has higher predictive precision than traditional prediction approaches\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.253720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了提高服务器负载的预测精度,提出了一种基于小波分析和支持向量回归相结合的服务器负载预测方法。对具有非线性、非平稳特征的服务器负载时间序列进行分解,然后用小波变换方法重构成多个分支。其中,最低尺度高频信号采用移动平均模型进行预测,其他分支分别采用支持向量回归进行预测,最终结果为预测结果的组合。理论分析和实验结果表明,小波分析可以将原始负荷序列分解为频率成分更简单、更易于预测的多个时间序列;支持向量回归具有较强的生成能力和对给定训练数据全局最小的保证,对于非平稳时间序列的预测具有较好的效果。与传统的预测方法相比,该方法具有更高的预测精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Server Load Based on Wavelet-Support Vector Regression-Moving Average
To improve the predication accuracy for server load, a novel predication method was proposed based on the integration of wavelet analysis and support vector regression. The server load time series, which is nonlinear and non-stationary, was decomposed and then, reconstructed into several branches by the wavelet method. Of these branches, the lowest scale high frequency signal was forecasted by moving average model, the others were predicted by support vector regression respectively and the final value was the combination of these predicted results. Theoretical analysis and experiment results show that wavelet analysis can decompose the original load series into several time series that have simpler frequency components and are easier to be forecasted; support vector regression has greater generation ability and guarantees global minima for given training data, it performs well for non-stationary time series prediction. So the method has higher predictive precision than traditional prediction approaches
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1