基于学习的工业臂异常检测

V. Narayanan, R. Bobba
{"title":"基于学习的工业臂异常检测","authors":"V. Narayanan, R. Bobba","doi":"10.1145/3264888.3264894","DOIUrl":null,"url":null,"abstract":"Smart Manufacturing (SM) is envisioned to make manufacturing processes more efficient through automation and integration of networked information systems. Robotic arms are integral to this vision. However the benefits of SM, enabled by automation and networking, also come with cyber risks. In this work, we propose an anomaly detection framework for robotic arms in a manufacturing pipeline and integrate it into Robot Operating System (ROS), a middleware framework whose variants are being considered for deployment in industrial environments for flexible automation. In particular, we explore whether the repetitive behavior of an industrial arm can be leveraged to detect anomalous behaviour that may indicate an intrusion. Based on a learned model, we classify a robot's actions as anomalous or benign. We introduce the notion of a 'tolerance envelope' to train a supervised learning model. Our empirical evaluation shows that anomalies that take the robot out of pre-determined tolerance levels can be detected with high accuracy.","PeriodicalId":247918,"journal":{"name":"Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Learning Based Anomaly Detection for Industrial Arm Applications\",\"authors\":\"V. Narayanan, R. Bobba\",\"doi\":\"10.1145/3264888.3264894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart Manufacturing (SM) is envisioned to make manufacturing processes more efficient through automation and integration of networked information systems. Robotic arms are integral to this vision. However the benefits of SM, enabled by automation and networking, also come with cyber risks. In this work, we propose an anomaly detection framework for robotic arms in a manufacturing pipeline and integrate it into Robot Operating System (ROS), a middleware framework whose variants are being considered for deployment in industrial environments for flexible automation. In particular, we explore whether the repetitive behavior of an industrial arm can be leveraged to detect anomalous behaviour that may indicate an intrusion. Based on a learned model, we classify a robot's actions as anomalous or benign. We introduce the notion of a 'tolerance envelope' to train a supervised learning model. Our empirical evaluation shows that anomalies that take the robot out of pre-determined tolerance levels can be detected with high accuracy.\",\"PeriodicalId\":247918,\"journal\":{\"name\":\"Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3264888.3264894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264888.3264894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

智能制造(SM)的设想是通过网络化信息系统的自动化和集成使制造过程更加高效。机械臂是这一愿景不可或缺的一部分。然而,通过自动化和网络化实现的SM带来的好处也伴随着网络风险。在这项工作中,我们提出了一个制造管道中机械臂的异常检测框架,并将其集成到机器人操作系统(ROS)中,ROS是一个中间件框架,其变体正在考虑在工业环境中部署,以实现灵活的自动化。特别是,我们探索是否可以利用工业臂的重复行为来检测可能表明入侵的异常行为。基于学习模型,我们将机器人的行为分为异常或良性。我们引入了“容忍包络”的概念来训练监督学习模型。我们的经验评估表明,将机器人带出预定公差水平的异常可以以高精度检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Based Anomaly Detection for Industrial Arm Applications
Smart Manufacturing (SM) is envisioned to make manufacturing processes more efficient through automation and integration of networked information systems. Robotic arms are integral to this vision. However the benefits of SM, enabled by automation and networking, also come with cyber risks. In this work, we propose an anomaly detection framework for robotic arms in a manufacturing pipeline and integrate it into Robot Operating System (ROS), a middleware framework whose variants are being considered for deployment in industrial environments for flexible automation. In particular, we explore whether the repetitive behavior of an industrial arm can be leveraged to detect anomalous behaviour that may indicate an intrusion. Based on a learned model, we classify a robot's actions as anomalous or benign. We introduce the notion of a 'tolerance envelope' to train a supervised learning model. Our empirical evaluation shows that anomalies that take the robot out of pre-determined tolerance levels can be detected with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy Secure Autonomous Cyber-Physical Systems Through Verifiable Information Flow Control Session details: Session 2: Intrusion and Anomaly detection CORGIDS: A Correlation-based Generic Intrusion Detection System Temporal Phase Shifts in SCADA Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1