对象检索挑战中基于成对学习的查询扩展

Hao Liu, Atsushi Shimada, Xing Xu, H. Nagahara, Hideaki Uchiyama, R. Taniguchi
{"title":"对象检索挑战中基于成对学习的查询扩展","authors":"Hao Liu, Atsushi Shimada, Xing Xu, H. Nagahara, Hideaki Uchiyama, R. Taniguchi","doi":"10.1109/FCV.2015.7103703","DOIUrl":null,"url":null,"abstract":"Making a reasonable ranking on images in dataset is one of the main objectives for object retrieval challenge, and in this paper we intend to improve the ranking quality. We follow the idea of query expansion in previous researches. Based on the use of bag-of-visual-words model, tf-idf scoring and spatial verification, previous method applied a pointwise style learning in query expansion stage, using but not fully exploring verification results. We intend to extend their learning approach for better discriminative power in retrieval. In re-ranking stage we propose a method using pairwise learning, instead of pointwise learning previously used. We could obtain more reliable ranking on a shortlist of examples. If this verification itself is reliable, a good re-ranking should best preserve this sub-ranking order. Thus in our proposed method, we are motivated to leverage a pairwise learning method to incorporate the ranking sequential information more efficiently. We evaluate and compare our proposed method with previous methods over Oxford 5k dataset, a standard benchmark dataset, where our method achieve better mean average precision and showed better discriminative power.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"79 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Query expansion with pairwise learning in object retrieval challenge\",\"authors\":\"Hao Liu, Atsushi Shimada, Xing Xu, H. Nagahara, Hideaki Uchiyama, R. Taniguchi\",\"doi\":\"10.1109/FCV.2015.7103703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Making a reasonable ranking on images in dataset is one of the main objectives for object retrieval challenge, and in this paper we intend to improve the ranking quality. We follow the idea of query expansion in previous researches. Based on the use of bag-of-visual-words model, tf-idf scoring and spatial verification, previous method applied a pointwise style learning in query expansion stage, using but not fully exploring verification results. We intend to extend their learning approach for better discriminative power in retrieval. In re-ranking stage we propose a method using pairwise learning, instead of pointwise learning previously used. We could obtain more reliable ranking on a shortlist of examples. If this verification itself is reliable, a good re-ranking should best preserve this sub-ranking order. Thus in our proposed method, we are motivated to leverage a pairwise learning method to incorporate the ranking sequential information more efficiently. We evaluate and compare our proposed method with previous methods over Oxford 5k dataset, a standard benchmark dataset, where our method achieve better mean average precision and showed better discriminative power.\",\"PeriodicalId\":424974,\"journal\":{\"name\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"volume\":\"79 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCV.2015.7103703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对数据集中的图像进行合理的排序是对象检索的主要目标之一,本文旨在提高排序质量。我们在之前的研究中遵循了查询扩展的思想。之前的方法在使用视觉词袋模型、tf-idf评分和空间验证的基础上,在查询扩展阶段采用点向风格学习,使用但未充分探索验证结果。我们打算扩展他们的学习方法,以获得更好的检索判别能力。在重新排序阶段,我们提出了一种使用成对学习的方法来代替以前使用的点学习方法。我们可以在一个短名单上获得更可靠的排名。如果这个验证本身是可靠的,那么一个好的重新排序应该最好地保留这个子排序顺序。因此,在我们提出的方法中,我们被激励利用成对学习方法来更有效地整合排名顺序信息。我们在牛津5k数据集(一个标准的基准数据集)上评估并比较了我们提出的方法,在牛津5k数据集上,我们的方法获得了更好的平均精度和更好的判别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Query expansion with pairwise learning in object retrieval challenge
Making a reasonable ranking on images in dataset is one of the main objectives for object retrieval challenge, and in this paper we intend to improve the ranking quality. We follow the idea of query expansion in previous researches. Based on the use of bag-of-visual-words model, tf-idf scoring and spatial verification, previous method applied a pointwise style learning in query expansion stage, using but not fully exploring verification results. We intend to extend their learning approach for better discriminative power in retrieval. In re-ranking stage we propose a method using pairwise learning, instead of pointwise learning previously used. We could obtain more reliable ranking on a shortlist of examples. If this verification itself is reliable, a good re-ranking should best preserve this sub-ranking order. Thus in our proposed method, we are motivated to leverage a pairwise learning method to incorporate the ranking sequential information more efficiently. We evaluate and compare our proposed method with previous methods over Oxford 5k dataset, a standard benchmark dataset, where our method achieve better mean average precision and showed better discriminative power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object classification using CNN for video traffic detection system Study on performance of MPEG-7 visual descriptors for deformable object retrieval Development of deep learning-based facial expression recognition system Robust detection of mosaic masking region A system architecture for real time traffic monitoring in foggy video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1