需求驱动的覆盖度量的伪造

Adel Dokhanchi, Aditya Zutshi, R. Sriniva, S. Sankaranarayanan, Georgios Fainekos
{"title":"需求驱动的覆盖度量的伪造","authors":"Adel Dokhanchi, Aditya Zutshi, R. Sriniva, S. Sankaranarayanan, Georgios Fainekos","doi":"10.1109/EMSOFT.2015.7318257","DOIUrl":null,"url":null,"abstract":"Specication guided falsication methods for hybrid systems have recently demonstrated their value in detecting design errors in models of safety critical systems. In specication guided falsication, the correctness problem, i.e., does the system satisfy the specication, is converted into an optimization problem where local negative minima indicate design errors. Due to the complexity of the resulting optimization problem, the problem is solved iteratively by performing a number of simulations on the system. Even though it is theoretically guaranteed that falsication methods will eventually find the bugs in the system, in practice, the performance of these methods, i.e., how many tests/simulations are executed before a bug is detected, depends on the specication, on the system and on the optimization method. In this paper, we define and utilize coverage metrics on the state space of hybrid systems in order to improve the performance of the falsication methods.","PeriodicalId":297297,"journal":{"name":"2015 International Conference on Embedded Software (EMSOFT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Requirements driven falsification with coverage metrics\",\"authors\":\"Adel Dokhanchi, Aditya Zutshi, R. Sriniva, S. Sankaranarayanan, Georgios Fainekos\",\"doi\":\"10.1109/EMSOFT.2015.7318257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specication guided falsication methods for hybrid systems have recently demonstrated their value in detecting design errors in models of safety critical systems. In specication guided falsication, the correctness problem, i.e., does the system satisfy the specication, is converted into an optimization problem where local negative minima indicate design errors. Due to the complexity of the resulting optimization problem, the problem is solved iteratively by performing a number of simulations on the system. Even though it is theoretically guaranteed that falsication methods will eventually find the bugs in the system, in practice, the performance of these methods, i.e., how many tests/simulations are executed before a bug is detected, depends on the specication, on the system and on the optimization method. In this paper, we define and utilize coverage metrics on the state space of hybrid systems in order to improve the performance of the falsication methods.\",\"PeriodicalId\":297297,\"journal\":{\"name\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2015.7318257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2015.7318257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

规范指导的混合系统伪造方法最近在检测安全关键系统模型中的设计错误方面显示了它们的价值。在规范指导下,将系统是否满足规范的正确性问题转化为优化问题,其中局部负极小值表示设计误差。由于所得到的优化问题的复杂性,该问题是通过在系统上进行多次模拟来迭代求解的。尽管理论上可以保证伪造方法最终会发现系统中的错误,但在实践中,这些方法的性能,即在检测到错误之前执行了多少测试/模拟,取决于规范,取决于系统和优化方法。本文在混合系统的状态空间上定义并利用了覆盖度量,以提高伪证方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Requirements driven falsification with coverage metrics
Specication guided falsication methods for hybrid systems have recently demonstrated their value in detecting design errors in models of safety critical systems. In specication guided falsication, the correctness problem, i.e., does the system satisfy the specication, is converted into an optimization problem where local negative minima indicate design errors. Due to the complexity of the resulting optimization problem, the problem is solved iteratively by performing a number of simulations on the system. Even though it is theoretically guaranteed that falsication methods will eventually find the bugs in the system, in practice, the performance of these methods, i.e., how many tests/simulations are executed before a bug is detected, depends on the specication, on the system and on the optimization method. In this paper, we define and utilize coverage metrics on the state space of hybrid systems in order to improve the performance of the falsication methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable scheduling of energy control systems Towards an industrial use of sound static analysis for the verification of concurrent embedded avionics software Exp-HE: a family of fast exponentiation algorithms resistant to SPA, fault, and combined attacks Verifying network performance of cyber-physical systems with multiple runtime configurations Bounded error flowpipe computation of parameterized linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1