基于迭代学习融合的遥感图像增强识别

Qianwen Yang, F. Sun, Huaping Liu
{"title":"基于迭代学习融合的遥感图像增强识别","authors":"Qianwen Yang, F. Sun, Huaping Liu","doi":"10.1109/PPRS.2012.6398322","DOIUrl":null,"url":null,"abstract":"This article focuses on remote sensing image fusion in order to improve target recognition performance. Current fusion algorithms are mostly designed for specific purpose and have exponential complexity. We propose a fast and robust image fusion algorithm-the iterative learning fusion (ILF) algorithm, to improve the quality of images. This algorithm combines iterative learning in control theory with Multi-scale Geometric Analysis (MGA) image fusion algorithms; also, we apply color transfer to preserve color feature and cooperate it with SVM to improve recognition. By performing iterative learning, fusion parameters will converge to optimal in MGA fusion process. Theoretical analysis and experiments demonstrate improvement of visual and quantitative performance by proposed algorithm.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced recognition using iterative learning fusion in remote sensing images\",\"authors\":\"Qianwen Yang, F. Sun, Huaping Liu\",\"doi\":\"10.1109/PPRS.2012.6398322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on remote sensing image fusion in order to improve target recognition performance. Current fusion algorithms are mostly designed for specific purpose and have exponential complexity. We propose a fast and robust image fusion algorithm-the iterative learning fusion (ILF) algorithm, to improve the quality of images. This algorithm combines iterative learning in control theory with Multi-scale Geometric Analysis (MGA) image fusion algorithms; also, we apply color transfer to preserve color feature and cooperate it with SVM to improve recognition. By performing iterative learning, fusion parameters will converge to optimal in MGA fusion process. Theoretical analysis and experiments demonstrate improvement of visual and quantitative performance by proposed algorithm.\",\"PeriodicalId\":139043,\"journal\":{\"name\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPRS.2012.6398322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究遥感图像融合技术,以提高目标识别性能。目前的融合算法大多是针对特定目的而设计的,具有指数级的复杂度。为了提高图像质量,提出了一种快速鲁棒的图像融合算法-迭代学习融合(ILF)算法。该算法将控制理论中的迭代学习与多尺度几何分析(MGA)图像融合算法相结合;采用颜色转移的方法保留颜色特征,并与支持向量机相结合,提高识别效率。在MGA融合过程中,通过迭代学习使融合参数收敛到最优。理论分析和实验表明,该算法提高了视觉性能和定量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced recognition using iterative learning fusion in remote sensing images
This article focuses on remote sensing image fusion in order to improve target recognition performance. Current fusion algorithms are mostly designed for specific purpose and have exponential complexity. We propose a fast and robust image fusion algorithm-the iterative learning fusion (ILF) algorithm, to improve the quality of images. This algorithm combines iterative learning in control theory with Multi-scale Geometric Analysis (MGA) image fusion algorithms; also, we apply color transfer to preserve color feature and cooperate it with SVM to improve recognition. By performing iterative learning, fusion parameters will converge to optimal in MGA fusion process. Theoretical analysis and experiments demonstrate improvement of visual and quantitative performance by proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D classification of crossroads from multiple aerial images using conditional random fields Unsupervised change detection via hierarchical support vector clustering Study for the periodicity of volcanic activity using satellite data A two-dimensional production system for grouping persistent scatterers in urban high-resolution SAR scenes Remote sensing segmentation benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1