累积平均与单位学习曲线的比较:蒙特卡罗方法

T. Miller, A. Dowling, David Youd, Eric J. Unger, E. White
{"title":"累积平均与单位学习曲线的比较:蒙特卡罗方法","authors":"T. Miller, A. Dowling, David Youd, Eric J. Unger, E. White","doi":"10.1080/1941658X.2012.682943","DOIUrl":null,"url":null,"abstract":"Cumulative average and unit cost learning curve methodologies dominate current learning curve theory. Both models mathematically estimate the structure of costs over time and under particular conditions. While cost estimators and industries have shown preferences for particular models, this article evaluates model performance under varying program characteristics. A Monte Carlo approach is used to perform analysis and identify the superior method for use under differing programmatic factors and conditions. Decision charts are provided to aide analysts' learning curve model selection for aircraft production and modification programs. Overall, the results indicate that the unit theory outperforms the cumulative average theory when more than 40 units exist to create a prediction learning curve or when the data presents high learning and low variation in the program; however, the cumulative average theory predicts unit costs with less error when few units to create the curve exists, low learning occurs, and high variation transpires. This article not subject to US copyright law.","PeriodicalId":390877,"journal":{"name":"Journal of Cost Analysis and Parametrics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Cumulative Average to Unit Learning Curves: A Monte Carlo Approach\",\"authors\":\"T. Miller, A. Dowling, David Youd, Eric J. Unger, E. White\",\"doi\":\"10.1080/1941658X.2012.682943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cumulative average and unit cost learning curve methodologies dominate current learning curve theory. Both models mathematically estimate the structure of costs over time and under particular conditions. While cost estimators and industries have shown preferences for particular models, this article evaluates model performance under varying program characteristics. A Monte Carlo approach is used to perform analysis and identify the superior method for use under differing programmatic factors and conditions. Decision charts are provided to aide analysts' learning curve model selection for aircraft production and modification programs. Overall, the results indicate that the unit theory outperforms the cumulative average theory when more than 40 units exist to create a prediction learning curve or when the data presents high learning and low variation in the program; however, the cumulative average theory predicts unit costs with less error when few units to create the curve exists, low learning occurs, and high variation transpires. This article not subject to US copyright law.\",\"PeriodicalId\":390877,\"journal\":{\"name\":\"Journal of Cost Analysis and Parametrics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cost Analysis and Parametrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1941658X.2012.682943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cost Analysis and Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1941658X.2012.682943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

累积平均和单位成本学习曲线方法主导了当前的学习曲线理论。这两种模型都用数学方法估算了特定条件下随时间变化的成本结构。虽然成本估算者和行业已经显示出对特定模型的偏好,但本文在不同的程序特征下评估模型的性能。蒙特卡罗方法用于执行分析和确定在不同的规划因素和条件下使用的最佳方法。决策图可以帮助分析人员选择飞机生产和改装项目的学习曲线模型。总体而言,结果表明,当超过40个单元存在以创建预测学习曲线或当数据在程序中呈现高学习和低变化时,单元理论优于累积平均理论;然而,累积平均理论预测的单位成本误差较小,当创建曲线的单位较少,学习较少,变化较大时。本文不受美国版权法的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Cumulative Average to Unit Learning Curves: A Monte Carlo Approach
Cumulative average and unit cost learning curve methodologies dominate current learning curve theory. Both models mathematically estimate the structure of costs over time and under particular conditions. While cost estimators and industries have shown preferences for particular models, this article evaluates model performance under varying program characteristics. A Monte Carlo approach is used to perform analysis and identify the superior method for use under differing programmatic factors and conditions. Decision charts are provided to aide analysts' learning curve model selection for aircraft production and modification programs. Overall, the results indicate that the unit theory outperforms the cumulative average theory when more than 40 units exist to create a prediction learning curve or when the data presents high learning and low variation in the program; however, the cumulative average theory predicts unit costs with less error when few units to create the curve exists, low learning occurs, and high variation transpires. This article not subject to US copyright law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board EOV Multiproduct Cost-Volume-Profit Model: A Resource Reallocation Approach for Decision Making Dynamics of New Building Construction Costs: Implications for Forecasting Escalation Allowances Balancing Expert Opinion and Historical Data: The Case of Baseball Umpires Using Robust Statistical Methodology to Evaluate the Cost Performance of Project Delivery Systems: A Case Study of Horizontal Construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1