{"title":"通过选择性电压缩放实现功率感知软错误硬化","authors":"Kai-Chiang Wu, Diana Marculescu","doi":"10.1109/ICCD.2008.4751877","DOIUrl":null,"url":null,"abstract":"Nanoscale integrated circuits are becoming increasingly sensitive to radiation-induced transient faults (soft errors) due to current technology scaling trends, such as shrinking feature sizes and reducing supply voltages. Soft errors, which have been a significant concern in memories, are now a main factor in reliability degradation of logic circuits. This paper presents a power-aware methodology using dual supply voltages for soft error hardening. Given a constraint on power overhead, our proposed framework can minimize the soft error rate (SER) of a circuit via selective voltage scaling. On average, circuit SER can be reduced by 33.45% for various sizes of transient glitches with only 11.74% energy increase. The overhead in normalized power-delay-area product per 1% SER reduction is 0.64%, 1.33X less than that of existing state-of-the-art approaches.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Power-aware soft error hardening via selective voltage scaling\",\"authors\":\"Kai-Chiang Wu, Diana Marculescu\",\"doi\":\"10.1109/ICCD.2008.4751877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscale integrated circuits are becoming increasingly sensitive to radiation-induced transient faults (soft errors) due to current technology scaling trends, such as shrinking feature sizes and reducing supply voltages. Soft errors, which have been a significant concern in memories, are now a main factor in reliability degradation of logic circuits. This paper presents a power-aware methodology using dual supply voltages for soft error hardening. Given a constraint on power overhead, our proposed framework can minimize the soft error rate (SER) of a circuit via selective voltage scaling. On average, circuit SER can be reduced by 33.45% for various sizes of transient glitches with only 11.74% energy increase. The overhead in normalized power-delay-area product per 1% SER reduction is 0.64%, 1.33X less than that of existing state-of-the-art approaches.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-aware soft error hardening via selective voltage scaling
Nanoscale integrated circuits are becoming increasingly sensitive to radiation-induced transient faults (soft errors) due to current technology scaling trends, such as shrinking feature sizes and reducing supply voltages. Soft errors, which have been a significant concern in memories, are now a main factor in reliability degradation of logic circuits. This paper presents a power-aware methodology using dual supply voltages for soft error hardening. Given a constraint on power overhead, our proposed framework can minimize the soft error rate (SER) of a circuit via selective voltage scaling. On average, circuit SER can be reduced by 33.45% for various sizes of transient glitches with only 11.74% energy increase. The overhead in normalized power-delay-area product per 1% SER reduction is 0.64%, 1.33X less than that of existing state-of-the-art approaches.