2型糖尿病患者分类关联规则

B. Patil, R. C. Joshi, Durga Toshniwal
{"title":"2型糖尿病患者分类关联规则","authors":"B. Patil, R. C. Joshi, Durga Toshniwal","doi":"10.1109/ICMLC.2010.67","DOIUrl":null,"url":null,"abstract":"The discovery of knowledge from medical databases is important in order to make effective medical diagnosis. The aim of data mining is extract the information from database and generate clear and understandable description of patterns. In this study we have introduced a new approach to generate association rules on numeric data. We propose a modified equal width binning interval approach to discretizing continuous valued attributes. The approximate width of the desired intervals is chosen based on the opinion of medical expert and is provided as an input parameter to the model. First we have converted numeric attributes into categorical form based on above techniques. Apriori algorithm is usually used for the market basket analysis was used to generate rules on Pima Indian diabetes data. The data set was taken from UCI machine learning repository containing total instances 768 and 8 numeric attributes.We discover that the often neglected pre-processing steps in knowledge discovery are the most critical elements in determining the success of a data mining application. Lastly we have generated the association rules which are useful to identify general associations in the data, to understand the relationship between the measured fields whether the patient goes on to develop diabetes or not. We are presented step-by-step approach to help the health doctors to explore their data and to understand the discovered rules better.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Association Rule for Classification of Type-2 Diabetic Patients\",\"authors\":\"B. Patil, R. C. Joshi, Durga Toshniwal\",\"doi\":\"10.1109/ICMLC.2010.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of knowledge from medical databases is important in order to make effective medical diagnosis. The aim of data mining is extract the information from database and generate clear and understandable description of patterns. In this study we have introduced a new approach to generate association rules on numeric data. We propose a modified equal width binning interval approach to discretizing continuous valued attributes. The approximate width of the desired intervals is chosen based on the opinion of medical expert and is provided as an input parameter to the model. First we have converted numeric attributes into categorical form based on above techniques. Apriori algorithm is usually used for the market basket analysis was used to generate rules on Pima Indian diabetes data. The data set was taken from UCI machine learning repository containing total instances 768 and 8 numeric attributes.We discover that the often neglected pre-processing steps in knowledge discovery are the most critical elements in determining the success of a data mining application. Lastly we have generated the association rules which are useful to identify general associations in the data, to understand the relationship between the measured fields whether the patient goes on to develop diabetes or not. We are presented step-by-step approach to help the health doctors to explore their data and to understand the discovered rules better.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

从医学数据库中发现知识对于进行有效的医学诊断是非常重要的。数据挖掘的目的是从数据库中提取信息,生成清晰易懂的模式描述。在本研究中,我们引入了一种新的方法来生成数值数据的关联规则。提出了一种改进的等宽分组区间方法来离散连续值属性。根据医学专家的意见选择期望区间的近似宽度,并将其作为模型的输入参数。首先,我们根据上述技术将数字属性转换为分类形式。采用Apriori算法对通常用于市场购物篮分析的皮马印第安人糖尿病数据生成规则。数据集取自UCI机器学习存储库,包含总共768个实例和8个数字属性。我们发现,在知识发现中经常被忽视的预处理步骤是决定数据挖掘应用成功的最关键因素。最后,我们生成了关联规则,它有助于识别数据中的一般关联,以了解所测量字段之间的关系,无论患者是否继续发展为糖尿病。我们提出了循序渐进的方法来帮助健康医生探索他们的数据,并更好地理解发现的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Association Rule for Classification of Type-2 Diabetic Patients
The discovery of knowledge from medical databases is important in order to make effective medical diagnosis. The aim of data mining is extract the information from database and generate clear and understandable description of patterns. In this study we have introduced a new approach to generate association rules on numeric data. We propose a modified equal width binning interval approach to discretizing continuous valued attributes. The approximate width of the desired intervals is chosen based on the opinion of medical expert and is provided as an input parameter to the model. First we have converted numeric attributes into categorical form based on above techniques. Apriori algorithm is usually used for the market basket analysis was used to generate rules on Pima Indian diabetes data. The data set was taken from UCI machine learning repository containing total instances 768 and 8 numeric attributes.We discover that the often neglected pre-processing steps in knowledge discovery are the most critical elements in determining the success of a data mining application. Lastly we have generated the association rules which are useful to identify general associations in the data, to understand the relationship between the measured fields whether the patient goes on to develop diabetes or not. We are presented step-by-step approach to help the health doctors to explore their data and to understand the discovered rules better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Ant Miner for Intrusion Detection An Approach Based on Clustering Method for Object Finding Mobile Robots Using ACO Statistical Feature Extraction for Classification of Image Spam Using Artificial Neural Networks Recognition of Faces Using Improved Principal Component Analysis Autonomous Navigation in Rubber Plantations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1