利用有效采样密度对光场绘制方法进行客观评价

H. Shidanshidi, F. Safaei, W. Li
{"title":"利用有效采样密度对光场绘制方法进行客观评价","authors":"H. Shidanshidi, F. Safaei, W. Li","doi":"10.1109/MMSP.2011.6093799","DOIUrl":null,"url":null,"abstract":"Light field rendering (LFR) is an active research area in computer vision and computer graphics. LFR plays a crucial role in free viewpoint video systems (FVV). Several rendering algorithms have been suggested for LFR. However, comparative evaluation of these methods is often limited to subjective assessment of the output. To overcome this problem, this paper presents a geometric measurement, Effective Sampling Density of the scene, referred to as effective sampling for brevity, for objective comparison and evaluation of LFR algorithms. We have derived the effective sampling for the well-known LFR methods. Both theoretical study and numerical simulation have shown that the proposed effective sampling is an effective indicator of the performance for LFR methods.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Objective evaluation of light field rendering methods using effective sampling density\",\"authors\":\"H. Shidanshidi, F. Safaei, W. Li\",\"doi\":\"10.1109/MMSP.2011.6093799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field rendering (LFR) is an active research area in computer vision and computer graphics. LFR plays a crucial role in free viewpoint video systems (FVV). Several rendering algorithms have been suggested for LFR. However, comparative evaluation of these methods is often limited to subjective assessment of the output. To overcome this problem, this paper presents a geometric measurement, Effective Sampling Density of the scene, referred to as effective sampling for brevity, for objective comparison and evaluation of LFR algorithms. We have derived the effective sampling for the well-known LFR methods. Both theoretical study and numerical simulation have shown that the proposed effective sampling is an effective indicator of the performance for LFR methods.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

光场渲染(LFR)是计算机视觉和计算机图形学领域的一个活跃研究领域。LFR在自由视点视频系统(FVV)中起着至关重要的作用。对于LFR,已经提出了几种渲染算法。然而,对这些方法的比较评价往往局限于对产出的主观评价。为了克服这一问题,本文提出了一种几何度量,即场景的有效采样密度(Effective Sampling Density),简称有效采样,用于对LFR算法进行客观比较和评价。我们推导出了众所周知的LFR方法的有效采样。理论研究和数值模拟都表明,有效采样是LFR方法性能的有效指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Objective evaluation of light field rendering methods using effective sampling density
Light field rendering (LFR) is an active research area in computer vision and computer graphics. LFR plays a crucial role in free viewpoint video systems (FVV). Several rendering algorithms have been suggested for LFR. However, comparative evaluation of these methods is often limited to subjective assessment of the output. To overcome this problem, this paper presents a geometric measurement, Effective Sampling Density of the scene, referred to as effective sampling for brevity, for objective comparison and evaluation of LFR algorithms. We have derived the effective sampling for the well-known LFR methods. Both theoretical study and numerical simulation have shown that the proposed effective sampling is an effective indicator of the performance for LFR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1