基于电化学模型的锂离子电池荷电状态估计

Chao Lyu, Lulu Zhang, Junfu Li, Yanben Zhao, W. Luo, Lixin Wang
{"title":"基于电化学模型的锂离子电池荷电状态估计","authors":"Chao Lyu, Lulu Zhang, Junfu Li, Yanben Zhao, W. Luo, Lixin Wang","doi":"10.1109/ICIEA.2019.8834045","DOIUrl":null,"url":null,"abstract":"In order to compare the performance of different state estimation algorithms in electrochamical model-based SOC(state of charge) estimation for lithium-ion battery, this paper proposed a series of SOC estimation approaches which use different algorithms including extended Kalman filter(EKF), adaptive extended Kalman filter(AEKF), particle filter(PF) and dichotomy. Their accuracy, convergence and computation efficiency was examined at the end of the paper.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochamical Model-based SOC Estimations by Using Different Algorithms for Lithium-ion Batteries\",\"authors\":\"Chao Lyu, Lulu Zhang, Junfu Li, Yanben Zhao, W. Luo, Lixin Wang\",\"doi\":\"10.1109/ICIEA.2019.8834045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to compare the performance of different state estimation algorithms in electrochamical model-based SOC(state of charge) estimation for lithium-ion battery, this paper proposed a series of SOC estimation approaches which use different algorithms including extended Kalman filter(EKF), adaptive extended Kalman filter(AEKF), particle filter(PF) and dichotomy. Their accuracy, convergence and computation efficiency was examined at the end of the paper.\",\"PeriodicalId\":311302,\"journal\":{\"name\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2019.8834045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8834045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了比较不同状态估计算法在基于电化学模型的锂离子电池荷电状态估计中的性能,本文提出了一系列使用扩展卡尔曼滤波(EKF)、自适应扩展卡尔曼滤波(AEKF)、粒子滤波(PF)和二分法等不同算法的荷电状态估计方法。最后对它们的精度、收敛性和计算效率进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochamical Model-based SOC Estimations by Using Different Algorithms for Lithium-ion Batteries
In order to compare the performance of different state estimation algorithms in electrochamical model-based SOC(state of charge) estimation for lithium-ion battery, this paper proposed a series of SOC estimation approaches which use different algorithms including extended Kalman filter(EKF), adaptive extended Kalman filter(AEKF), particle filter(PF) and dichotomy. Their accuracy, convergence and computation efficiency was examined at the end of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes Energy efficiency analysis of a liquefied natural gas and electric power combined transmission system Design and analysis of a novel tip-tilt stage with high precision for space applications Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis Smart Home Energy Management Optimization Method Considering ESS and PEV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1