网络中的学习:复值神经元、剪枝和规则提取

J. Zurada, I. Aizenberg, M. Mazurowski
{"title":"网络中的学习:复值神经元、剪枝和规则提取","authors":"J. Zurada, I. Aizenberg, M. Mazurowski","doi":"10.1109/IS.2008.4670394","DOIUrl":null,"url":null,"abstract":"This paper focuses on neural networks with complex-valued (CV) neurons as well as on selected aspects of neural networks learning, pruning and rule extraction. CV neurons can be used as versatile substitutes in real-valued perceptron networks. Learning of CV layers is discussed in context of traditional multilayer feedforward architecture. Such learning is derivative-free and it usually requires networks of reduced size. Selected examples and applications of CV-networks in bioinformatics and pattern recognition are discussed. The paper also covers specialized learning techniques for logic rule extraction. Such techniques include learning with pruning, and can be used in expert systems, and other applications that rely on models developed to fit measured data.","PeriodicalId":305750,"journal":{"name":"2008 4th International IEEE Conference Intelligent Systems","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning in networks: Complex-valued neurons, pruning, and rule extraction\",\"authors\":\"J. Zurada, I. Aizenberg, M. Mazurowski\",\"doi\":\"10.1109/IS.2008.4670394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on neural networks with complex-valued (CV) neurons as well as on selected aspects of neural networks learning, pruning and rule extraction. CV neurons can be used as versatile substitutes in real-valued perceptron networks. Learning of CV layers is discussed in context of traditional multilayer feedforward architecture. Such learning is derivative-free and it usually requires networks of reduced size. Selected examples and applications of CV-networks in bioinformatics and pattern recognition are discussed. The paper also covers specialized learning techniques for logic rule extraction. Such techniques include learning with pruning, and can be used in expert systems, and other applications that rely on models developed to fit measured data.\",\"PeriodicalId\":305750,\"journal\":{\"name\":\"2008 4th International IEEE Conference Intelligent Systems\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2008.4670394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2008.4670394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究具有复值(CV)神经元的神经网络,以及神经网络的学习、修剪和规则提取等方面。CV神经元可以作为实值感知器网络的通用替代品。在传统的多层前馈结构背景下讨论了CV层的学习。这种学习是无导数的,通常需要缩小网络的规模。本文讨论了cv网络在生物信息学和模式识别中的应用。本文还涵盖了逻辑规则提取的专门学习技术。这些技术包括通过修剪进行学习,可以用于专家系统和其他依赖于为拟合测量数据而开发的模型的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning in networks: Complex-valued neurons, pruning, and rule extraction
This paper focuses on neural networks with complex-valued (CV) neurons as well as on selected aspects of neural networks learning, pruning and rule extraction. CV neurons can be used as versatile substitutes in real-valued perceptron networks. Learning of CV layers is discussed in context of traditional multilayer feedforward architecture. Such learning is derivative-free and it usually requires networks of reduced size. Selected examples and applications of CV-networks in bioinformatics and pattern recognition are discussed. The paper also covers specialized learning techniques for logic rule extraction. Such techniques include learning with pruning, and can be used in expert systems, and other applications that rely on models developed to fit measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Neural Network for detecting nonlinear determinism in gastric electrical activity: Fractal dimension approach Clustering and sorting multi-attribute objects in multiset metric space Design of a context script language for developing context-aware applications in ubiquitous intelligent environment The software for 3D-viewing of educational topic maps Semantics-based information valuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1