基于模块恢复的TMR系统的重构控制网络

D. Agiakatsikas, N. T. H. Nguyen, Zhuoran Zhao, Tong Wu, E. Çetin, O. Diessel, Lingkan Gong
{"title":"基于模块恢复的TMR系统的重构控制网络","authors":"D. Agiakatsikas, N. T. H. Nguyen, Zhuoran Zhao, Tong Wu, E. Çetin, O. Diessel, Lingkan Gong","doi":"10.1109/FCCM.2016.30","DOIUrl":null,"url":null,"abstract":"Field-Programmable Gate Arrays (FPGAs) provide ideal platforms for meeting the computational requirements of future space-based processing systems. However, FPGAs are susceptible to radiation-induced Single Event Upsets (SEUs). Techniques for dynamically reconfiguring corrupted modules of Triple Modular Redundant (TMR) components are well known. However, most of these techniques utilize resources that are themselves susceptible to SEUs to transfer reconfiguration requests from the TMR voters to a central reconfiguration controller. This paper evaluates the impact of these Reconfiguration Control Networks (RCNs) on the system's reliability and performance. We provide an overview of RCNs reported in the literature and compare them in terms of dependability, scalability and performance. We implemented our designs on a Xilinx Artix-7 FPGA to assess the resulting resource utilization and performance as well as to evaluate their soft error vulnerability using analytical techniques. We show that of the RCN topologies studied, an ICAP-based approach is the most reliable despite having the highest network latency. We also conclude that a module-based recovery approach is less reliable than scrubbing unless the RCN is triplicated and repaired when it suffers configuration memory errors.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reconfiguration Control Networks for TMR Systems with Module-Based Recovery\",\"authors\":\"D. Agiakatsikas, N. T. H. Nguyen, Zhuoran Zhao, Tong Wu, E. Çetin, O. Diessel, Lingkan Gong\",\"doi\":\"10.1109/FCCM.2016.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field-Programmable Gate Arrays (FPGAs) provide ideal platforms for meeting the computational requirements of future space-based processing systems. However, FPGAs are susceptible to radiation-induced Single Event Upsets (SEUs). Techniques for dynamically reconfiguring corrupted modules of Triple Modular Redundant (TMR) components are well known. However, most of these techniques utilize resources that are themselves susceptible to SEUs to transfer reconfiguration requests from the TMR voters to a central reconfiguration controller. This paper evaluates the impact of these Reconfiguration Control Networks (RCNs) on the system's reliability and performance. We provide an overview of RCNs reported in the literature and compare them in terms of dependability, scalability and performance. We implemented our designs on a Xilinx Artix-7 FPGA to assess the resulting resource utilization and performance as well as to evaluate their soft error vulnerability using analytical techniques. We show that of the RCN topologies studied, an ICAP-based approach is the most reliable despite having the highest network latency. We also conclude that a module-based recovery approach is less reliable than scrubbing unless the RCN is triplicated and repaired when it suffers configuration memory errors.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

现场可编程门阵列(fpga)为满足未来天基处理系统的计算需求提供了理想的平台。然而,fpga容易受到辐射引起的单事件干扰(SEUs)的影响。动态重新配置三模冗余(TMR)组件损坏模块的技术是众所周知的。然而,这些技术中的大多数都利用本身易受seu影响的资源,将来自TMR投票人的重新配置请求传输到中央重新配置控制器。本文评估了这些重构控制网络(rcn)对系统可靠性和性能的影响。我们概述了文献中报道的rcn,并在可靠性、可伸缩性和性能方面对它们进行了比较。我们在Xilinx Artix-7 FPGA上实现了我们的设计,以评估由此产生的资源利用率和性能,并使用分析技术评估其软错误漏洞。我们表明,在所研究的RCN拓扑中,尽管具有最高的网络延迟,但基于icap的方法是最可靠的。我们还得出结论,基于模块的恢复方法不如扫描可靠,除非RCN被复制三倍,并在遇到配置内存错误时进行修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconfiguration Control Networks for TMR Systems with Module-Based Recovery
Field-Programmable Gate Arrays (FPGAs) provide ideal platforms for meeting the computational requirements of future space-based processing systems. However, FPGAs are susceptible to radiation-induced Single Event Upsets (SEUs). Techniques for dynamically reconfiguring corrupted modules of Triple Modular Redundant (TMR) components are well known. However, most of these techniques utilize resources that are themselves susceptible to SEUs to transfer reconfiguration requests from the TMR voters to a central reconfiguration controller. This paper evaluates the impact of these Reconfiguration Control Networks (RCNs) on the system's reliability and performance. We provide an overview of RCNs reported in the literature and compare them in terms of dependability, scalability and performance. We implemented our designs on a Xilinx Artix-7 FPGA to assess the resulting resource utilization and performance as well as to evaluate their soft error vulnerability using analytical techniques. We show that of the RCN topologies studied, an ICAP-based approach is the most reliable despite having the highest network latency. We also conclude that a module-based recovery approach is less reliable than scrubbing unless the RCN is triplicated and repaired when it suffers configuration memory errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial Predicates Evaluation in the Geohash Domain Using Reconfigurable Hardware Two-Hit Filter Synthesis for Genomic Database Search Initiation Interval Aware Resource Sharing for FPGA DSP Blocks Finding Space-Time Stream Permutations for Minimum Memory and Latency Runtime Parameterizable Regular Expression Operators for Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1