{"title":"具有Wiener过程的马尔可夫跳跃Hopfield神经网络随机稳定性的LMI方法","authors":"X. Lou, B. Cui","doi":"10.1109/ISDA.2006.187","DOIUrl":null,"url":null,"abstract":"This paper deals with the stochastic stability problem for Markovian jumping Hopfield neural networks (MJHNNs) with time-varying delays and Wiener process. Our attention is focused on developing sufficient conditions on stochastic stability, even if the system contains Wiener process. All the obtained results are presented in terms of linear matrix inequality. The efficiency of the proposed results is demonstrated via two numerical examples","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LMI Approach for Stochastic Stability of Markovian Jumping Hopfield Neural Networks with Wiener Process\",\"authors\":\"X. Lou, B. Cui\",\"doi\":\"10.1109/ISDA.2006.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the stochastic stability problem for Markovian jumping Hopfield neural networks (MJHNNs) with time-varying delays and Wiener process. Our attention is focused on developing sufficient conditions on stochastic stability, even if the system contains Wiener process. All the obtained results are presented in terms of linear matrix inequality. The efficiency of the proposed results is demonstrated via two numerical examples\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LMI Approach for Stochastic Stability of Markovian Jumping Hopfield Neural Networks with Wiener Process
This paper deals with the stochastic stability problem for Markovian jumping Hopfield neural networks (MJHNNs) with time-varying delays and Wiener process. Our attention is focused on developing sufficient conditions on stochastic stability, even if the system contains Wiener process. All the obtained results are presented in terms of linear matrix inequality. The efficiency of the proposed results is demonstrated via two numerical examples