一个基于FORTRAN的计算机程序,用于对经验数据进行理论概率分布的拟合优度检验

ACM-SE 17 Pub Date : 1979-04-09 DOI:10.1145/503506.503542
Sue D. Guthrie
{"title":"一个基于FORTRAN的计算机程序,用于对经验数据进行理论概率分布的拟合优度检验","authors":"Sue D. Guthrie","doi":"10.1145/503506.503542","DOIUrl":null,"url":null,"abstract":"Data gathering in an attempt to gain knowledge about a particular phenomenon is a key element in the work of scientists and engineers. It is a first step in the mathematical modeling or simulation of any real-world system under study. A researcher can choose to model his system with empirical data or with a theoretical probability distribution which best describes his observed data. The latter method is usually preferable.","PeriodicalId":258426,"journal":{"name":"ACM-SE 17","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FORTRAN based computer program to perform goodness of fit testing of empirical data to theoretical probability distributions\",\"authors\":\"Sue D. Guthrie\",\"doi\":\"10.1145/503506.503542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data gathering in an attempt to gain knowledge about a particular phenomenon is a key element in the work of scientists and engineers. It is a first step in the mathematical modeling or simulation of any real-world system under study. A researcher can choose to model his system with empirical data or with a theoretical probability distribution which best describes his observed data. The latter method is usually preferable.\",\"PeriodicalId\":258426,\"journal\":{\"name\":\"ACM-SE 17\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 17\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/503506.503542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503506.503542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在科学家和工程师的工作中,收集数据以获取有关某一特定现象的知识是一个关键要素。这是对所研究的任何现实世界系统进行数学建模或模拟的第一步。研究人员可以选择用经验数据或最能描述他所观察到的数据的理论概率分布来为他的系统建模。后一种方法通常更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A FORTRAN based computer program to perform goodness of fit testing of empirical data to theoretical probability distributions
Data gathering in an attempt to gain knowledge about a particular phenomenon is a key element in the work of scientists and engineers. It is a first step in the mathematical modeling or simulation of any real-world system under study. A researcher can choose to model his system with empirical data or with a theoretical probability distribution which best describes his observed data. The latter method is usually preferable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An assessment of organizational practices in data processing environments Indirect addressing techniques in the design and implementation of an on-line file access program Toward a multiple copy file assignment model for files in a computer system Exact tests of significance in 2xM contingency tables Some properties of relational expressions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1