没有特征工程的维基百科文章的质量评估

Quang-Vinh Dang, C. Ignat
{"title":"没有特征工程的维基百科文章的质量评估","authors":"Quang-Vinh Dang, C. Ignat","doi":"10.1145/2910896.2910917","DOIUrl":null,"url":null,"abstract":"As Wikipedia became the largest human knowledge repository, quality measurement of its articles received a lot of attention during the last decade. Most research efforts focused on classification of Wikipedia articles quality by using a different feature set. However, so far, no “golden feature set” was proposed. In this paper, we present a novel approach for classifying Wikipedia articles by analysing their content rather than by considering a feature set. Our approach uses recent techniques in natural language processing and deep learning, and achieved a comparable result with the state-of-the-art.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Quality assessment of Wikipedia articles without feature engineering\",\"authors\":\"Quang-Vinh Dang, C. Ignat\",\"doi\":\"10.1145/2910896.2910917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Wikipedia became the largest human knowledge repository, quality measurement of its articles received a lot of attention during the last decade. Most research efforts focused on classification of Wikipedia articles quality by using a different feature set. However, so far, no “golden feature set” was proposed. In this paper, we present a novel approach for classifying Wikipedia articles by analysing their content rather than by considering a feature set. Our approach uses recent techniques in natural language processing and deep learning, and achieved a comparable result with the state-of-the-art.\",\"PeriodicalId\":109613,\"journal\":{\"name\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2910917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2910917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

随着维基百科成为最大的人类知识库,其文章的质量度量在过去十年中受到了很多关注。大多数的研究都是通过使用不同的特征集来对维基百科文章的质量进行分类。然而,到目前为止,还没有提出“黄金特性集”。在本文中,我们提出了一种通过分析维基百科文章的内容而不是考虑特征集来对其进行分类的新方法。我们的方法使用了自然语言处理和深度学习方面的最新技术,并取得了与最先进技术相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality assessment of Wikipedia articles without feature engineering
As Wikipedia became the largest human knowledge repository, quality measurement of its articles received a lot of attention during the last decade. Most research efforts focused on classification of Wikipedia articles quality by using a different feature set. However, so far, no “golden feature set” was proposed. In this paper, we present a novel approach for classifying Wikipedia articles by analysing their content rather than by considering a feature set. Our approach uses recent techniques in natural language processing and deep learning, and achieved a comparable result with the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL 2016) Panel: Preserving born-digital news ArchiveSpark: Efficient Web archive access, extraction and derivation Desiderata for exploratory search interfaces to Web archives in support of scholarly activities How to identify specialized research communities related to a researcher's changing interests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1