通过考虑多样性、主流性和新颖性,为用户量身定制音乐推荐

M. Schedl, D. Hauger
{"title":"通过考虑多样性、主流性和新颖性,为用户量身定制音乐推荐","authors":"M. Schedl, D. Hauger","doi":"10.1145/2766462.2767763","DOIUrl":null,"url":null,"abstract":"A shortcoming of current approaches for music recommendation is that they consider user-specific characteristics only on a very simple level, typically as some kind of interaction between users and items when employing collaborative filtering. To alleviate this issue, we propose several user features that model aspects of the user's music listening behavior: diversity, mainstreaminess, and novelty of the user's music taste. To validate the proposed features, we conduct a comprehensive evaluation of a variety of music recommendation approaches (stand-alone and hybrids) on a collection of almost 200 million listening events gathered from \\propername{Last.fm}. We report first results and highlight cases where our diversity, mainstreaminess, and novelty features can be beneficially integrated into music recommender systems.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Tailoring Music Recommendations to Users by Considering Diversity, Mainstreaminess, and Novelty\",\"authors\":\"M. Schedl, D. Hauger\",\"doi\":\"10.1145/2766462.2767763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shortcoming of current approaches for music recommendation is that they consider user-specific characteristics only on a very simple level, typically as some kind of interaction between users and items when employing collaborative filtering. To alleviate this issue, we propose several user features that model aspects of the user's music listening behavior: diversity, mainstreaminess, and novelty of the user's music taste. To validate the proposed features, we conduct a comprehensive evaluation of a variety of music recommendation approaches (stand-alone and hybrids) on a collection of almost 200 million listening events gathered from \\\\propername{Last.fm}. We report first results and highlight cases where our diversity, mainstreaminess, and novelty features can be beneficially integrated into music recommender systems.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

当前音乐推荐方法的一个缺点是,它们只在非常简单的层面上考虑用户特定的特征,通常在使用协同过滤时作为用户和项目之间的某种交互。为了缓解这个问题,我们提出了几个用户特征来模拟用户音乐聆听行为的各个方面:用户音乐品味的多样性、主流性和新颖性。为了验证所提出的功能,我们在从\propername{Last.fm}收集的近2亿个收听事件的集合上对各种音乐推荐方法(独立和混合)进行了全面评估。我们报告了第一批结果,并强调了我们的多样性、主流性和新颖性可以有效地集成到音乐推荐系统中的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring Music Recommendations to Users by Considering Diversity, Mainstreaminess, and Novelty
A shortcoming of current approaches for music recommendation is that they consider user-specific characteristics only on a very simple level, typically as some kind of interaction between users and items when employing collaborative filtering. To alleviate this issue, we propose several user features that model aspects of the user's music listening behavior: diversity, mainstreaminess, and novelty of the user's music taste. To validate the proposed features, we conduct a comprehensive evaluation of a variety of music recommendation approaches (stand-alone and hybrids) on a collection of almost 200 million listening events gathered from \propername{Last.fm}. We report first results and highlight cases where our diversity, mainstreaminess, and novelty features can be beneficially integrated into music recommender systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1