{"title":"船用核电平台prhrhx倾斜工况下冷凝换热特性研究","authors":"Pengzheng Li, Yongquan Li, Shaoyou Liu, Dong Zhu, Zhiqiang Zhu, Xiaming Kong","doi":"10.1115/icone29-92406","DOIUrl":null,"url":null,"abstract":"\n Passive residual heat removal heat exchanger (PRHR HX) is one of the important equipment in passive residual heat removal system (PRHRs) of marine nuclear power platform. The research on the condensation heat transfer characteristics of saturated steam in PRHR HX tube under tilting condition can provide support and optimization for passive safety system design of marine nuclear power platform. The work in this paper is of great significance to safe operation of marine nuclear power platform. The heat transfer characteristics of saturated steam condensation in the PRHR HX tube under tilting condition are analyzed by building an experimental device with a power ratio of 1:50. The experimental results show that within the range of experimental parameters in this paper, compared with the static state of the experimental device, the condensation heat transfer coefficient of saturated steam in PRHR HX tube under tilting condition is increased. When the heat flux is 190kW/m2, the heat transfer coefficient of saturated steam condensation in PRHR HX tube under tilting condition increases by about 40% compared with static condition. In this paper the formula for calculating the condensation heat transfer coefficient of saturated steam in PRHR HX tube is revised by introducing the tilt angle. The relative error between the modified formula and the experimental value is within ±10%. The research results of this paper can provide reference for the design and optimization of passive safety systems for marine nuclear power platform and similar applications.","PeriodicalId":325659,"journal":{"name":"Volume 7B: Thermal-Hydraulics and Safety Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Characteristics of Condensation Heat Transfer for Marine Nuclear Power Platform PRHR HX Under Tilting Condition\",\"authors\":\"Pengzheng Li, Yongquan Li, Shaoyou Liu, Dong Zhu, Zhiqiang Zhu, Xiaming Kong\",\"doi\":\"10.1115/icone29-92406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Passive residual heat removal heat exchanger (PRHR HX) is one of the important equipment in passive residual heat removal system (PRHRs) of marine nuclear power platform. The research on the condensation heat transfer characteristics of saturated steam in PRHR HX tube under tilting condition can provide support and optimization for passive safety system design of marine nuclear power platform. The work in this paper is of great significance to safe operation of marine nuclear power platform. The heat transfer characteristics of saturated steam condensation in the PRHR HX tube under tilting condition are analyzed by building an experimental device with a power ratio of 1:50. The experimental results show that within the range of experimental parameters in this paper, compared with the static state of the experimental device, the condensation heat transfer coefficient of saturated steam in PRHR HX tube under tilting condition is increased. When the heat flux is 190kW/m2, the heat transfer coefficient of saturated steam condensation in PRHR HX tube under tilting condition increases by about 40% compared with static condition. In this paper the formula for calculating the condensation heat transfer coefficient of saturated steam in PRHR HX tube is revised by introducing the tilt angle. The relative error between the modified formula and the experimental value is within ±10%. The research results of this paper can provide reference for the design and optimization of passive safety systems for marine nuclear power platform and similar applications.\",\"PeriodicalId\":325659,\"journal\":{\"name\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-92406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Thermal-Hydraulics and Safety Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Characteristics of Condensation Heat Transfer for Marine Nuclear Power Platform PRHR HX Under Tilting Condition
Passive residual heat removal heat exchanger (PRHR HX) is one of the important equipment in passive residual heat removal system (PRHRs) of marine nuclear power platform. The research on the condensation heat transfer characteristics of saturated steam in PRHR HX tube under tilting condition can provide support and optimization for passive safety system design of marine nuclear power platform. The work in this paper is of great significance to safe operation of marine nuclear power platform. The heat transfer characteristics of saturated steam condensation in the PRHR HX tube under tilting condition are analyzed by building an experimental device with a power ratio of 1:50. The experimental results show that within the range of experimental parameters in this paper, compared with the static state of the experimental device, the condensation heat transfer coefficient of saturated steam in PRHR HX tube under tilting condition is increased. When the heat flux is 190kW/m2, the heat transfer coefficient of saturated steam condensation in PRHR HX tube under tilting condition increases by about 40% compared with static condition. In this paper the formula for calculating the condensation heat transfer coefficient of saturated steam in PRHR HX tube is revised by introducing the tilt angle. The relative error between the modified formula and the experimental value is within ±10%. The research results of this paper can provide reference for the design and optimization of passive safety systems for marine nuclear power platform and similar applications.