基于多模态变压器和深度强化学习的自动驾驶决策*

Wen Fu, Yanjie Li, Zhaohui Ye, Qi Liu
{"title":"基于多模态变压器和深度强化学习的自动驾驶决策*","authors":"Wen Fu, Yanjie Li, Zhaohui Ye, Qi Liu","doi":"10.1109/RCAR54675.2022.9872180","DOIUrl":null,"url":null,"abstract":"On the basis of environmental information processed by the sensing module, the decision module in automatic driving integrates environmental and vehicle information to make the autonomous vehicle produce safe and reasonable driving behavior. Considering the complexity and variability of the driving environment of autonomous vehicles, researchers have begun to apply deep reinforcement learning (DRL) in the study of autonomous driving control strategies in recent years. In this paper, we apply an algorithm framework combining multimodal transformer and DRL to solve the autonomous driving decision problem in complex scenarios. We use ResNet and transformer to extract the features of LiDAR point cloud and image. We use Deep Deterministic Policy Gradient (DDPG) algorithm to complete the subsequent autonomous driving decision-making task. And we use information bottleneck to improve the sampling efficiency of RL. We use CARLA simulator to evaluate our approach. The results show that our approach allows the agent to learn better driving strategies.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Making for Autonomous Driving Via Multimodal Transformer and Deep Reinforcement Learning*\",\"authors\":\"Wen Fu, Yanjie Li, Zhaohui Ye, Qi Liu\",\"doi\":\"10.1109/RCAR54675.2022.9872180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of environmental information processed by the sensing module, the decision module in automatic driving integrates environmental and vehicle information to make the autonomous vehicle produce safe and reasonable driving behavior. Considering the complexity and variability of the driving environment of autonomous vehicles, researchers have begun to apply deep reinforcement learning (DRL) in the study of autonomous driving control strategies in recent years. In this paper, we apply an algorithm framework combining multimodal transformer and DRL to solve the autonomous driving decision problem in complex scenarios. We use ResNet and transformer to extract the features of LiDAR point cloud and image. We use Deep Deterministic Policy Gradient (DDPG) algorithm to complete the subsequent autonomous driving decision-making task. And we use information bottleneck to improve the sampling efficiency of RL. We use CARLA simulator to evaluate our approach. The results show that our approach allows the agent to learn better driving strategies.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶中的决策模块在感知模块处理环境信息的基础上,将环境信息与车辆信息进行整合,使自动驾驶汽车产生安全合理的驾驶行为。考虑到自动驾驶汽车行驶环境的复杂性和可变性,近年来研究人员开始将深度强化学习(DRL)应用于自动驾驶控制策略的研究。本文采用多模态变压器和DRL相结合的算法框架来解决复杂场景下的自动驾驶决策问题。利用ResNet和transformer对激光雷达点云和图像进行特征提取。我们使用深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法来完成后续的自动驾驶决策任务。并利用信息瓶颈来提高强化学习的采样效率。我们使用CARLA模拟器来评估我们的方法。结果表明,我们的方法允许智能体学习更好的驾驶策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision Making for Autonomous Driving Via Multimodal Transformer and Deep Reinforcement Learning*
On the basis of environmental information processed by the sensing module, the decision module in automatic driving integrates environmental and vehicle information to make the autonomous vehicle produce safe and reasonable driving behavior. Considering the complexity and variability of the driving environment of autonomous vehicles, researchers have begun to apply deep reinforcement learning (DRL) in the study of autonomous driving control strategies in recent years. In this paper, we apply an algorithm framework combining multimodal transformer and DRL to solve the autonomous driving decision problem in complex scenarios. We use ResNet and transformer to extract the features of LiDAR point cloud and image. We use Deep Deterministic Policy Gradient (DDPG) algorithm to complete the subsequent autonomous driving decision-making task. And we use information bottleneck to improve the sampling efficiency of RL. We use CARLA simulator to evaluate our approach. The results show that our approach allows the agent to learn better driving strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth Recognition of Hard Inclusions in Tissue Phantoms for Robotic Palpation Design of a Miniaturized Magnetic Actuation System for Motion Control of Micro/Nano Swimming Robots Energy Shaping Based Nonlinear Anti-Swing Controller for Double-Pendulum Rotary Crane with Distributed-Mass Beams RCAR 2022 Cover Page Design and Implementation of Robot Middleware Service Integration Framework Based on DDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1