基于层次贝叶斯框架的消费行为预测

Nuha Zamzami, N. Bouguila
{"title":"基于层次贝叶斯框架的消费行为预测","authors":"Nuha Zamzami, N. Bouguila","doi":"10.1109/AI4I.2018.8665715","DOIUrl":null,"url":null,"abstract":"Purchasing products, listening to music, visiting locations in physical or virtual environments are examples of applications where users can interact with a large set of items. In this context, making predictions for both previously-consumed and new items for an individual, rather than just recommending new items, is significant in many situations. A recent work has shown that a mixture of Multinomials outperforms the widely-used matrix factorization. We further investigate this problem and propose the use of alternative mixtures based on hierarchical Bayesian frameworks to better balance individual preferences in terms of exploitation and exploration. We evaluate the alternative models accuracy in user consumption predictions using several real-world datasets, and show their efficiency for this problem.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Consumption Behavior Prediction Using Hierarchical Bayesian Frameworks\",\"authors\":\"Nuha Zamzami, N. Bouguila\",\"doi\":\"10.1109/AI4I.2018.8665715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purchasing products, listening to music, visiting locations in physical or virtual environments are examples of applications where users can interact with a large set of items. In this context, making predictions for both previously-consumed and new items for an individual, rather than just recommending new items, is significant in many situations. A recent work has shown that a mixture of Multinomials outperforms the widely-used matrix factorization. We further investigate this problem and propose the use of alternative mixtures based on hierarchical Bayesian frameworks to better balance individual preferences in terms of exploitation and exploration. We evaluate the alternative models accuracy in user consumption predictions using several real-world datasets, and show their efficiency for this problem.\",\"PeriodicalId\":133657,\"journal\":{\"name\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I.2018.8665715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

购买产品、听音乐、访问物理或虚拟环境中的位置都是用户可以与大量项目进行交互的应用程序示例。在这种情况下,对个人之前消费的物品和新物品进行预测,而不仅仅是推荐新物品,在许多情况下都很重要。最近的一项工作表明,多项式的混合优于广泛使用的矩阵分解。我们进一步研究了这个问题,并提出使用基于层次贝叶斯框架的替代混合物,以更好地平衡个人在开发和探索方面的偏好。我们使用几个真实世界的数据集评估了替代模型在用户消费预测中的准确性,并展示了它们在这个问题上的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consumption Behavior Prediction Using Hierarchical Bayesian Frameworks
Purchasing products, listening to music, visiting locations in physical or virtual environments are examples of applications where users can interact with a large set of items. In this context, making predictions for both previously-consumed and new items for an individual, rather than just recommending new items, is significant in many situations. A recent work has shown that a mixture of Multinomials outperforms the widely-used matrix factorization. We further investigate this problem and propose the use of alternative mixtures based on hierarchical Bayesian frameworks to better balance individual preferences in terms of exploitation and exploration. We evaluate the alternative models accuracy in user consumption predictions using several real-world datasets, and show their efficiency for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Seismic Image Interpretations with Hyperknowledge Applying Machine Learning to Service Assurance in Network Function Virtualization Environment Combinatorial Algorithms in Machine Learning AI Application to Data Analysis, Automatic File Processing Multi-Layer Nested Scatter Plot a Data Wrangling Method for Correlated Multi-Channel Time Series Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1