城市空中交通- 6G用例?

Shuja Ansari, Ahmad Taha , K. Dashtipour, Y. Sambo, Qammer H. Abbasi , Muhammad Ali Imran 
{"title":"城市空中交通- 6G用例?","authors":"Shuja Ansari, Ahmad Taha , K. Dashtipour, Y. Sambo, Qammer H. Abbasi , Muhammad Ali Imran ","doi":"10.3389/frcmn.2021.729767","DOIUrl":null,"url":null,"abstract":"The increasing popularity of Unmanned Aerial Vehicles (UAV) has resulted in exponential growth of the market owing to numerous applications that have been facilitated by advances in battery technology and wireless communications. Given the successes of UAVs thus far, researchers are already gearing towards aerial transport systems that consist of dense deployment of both UAVs and Personal Aerial Vehicles (PAVs) with human passengers. Although the fifth-generation mobile network (5G) key performance indicators have been optimised to support drone use cases for both high data rates and low latency applications, future aerial transport systems will require stricter network key performance indicators to support the expected massive deployment of aerial vehicles taking into account network capacity and distance between the base station and the aerial vehicles, among others. In this article, we present our perspective, vision, architecture, requirements and key performance indicators for future aerial wireless networks supported by 6G for Urban Air Mobility (UAM). Furthermore, we review key enabling technologies and discuss future challenges for incorporating aerial wireless networks in 6G.","PeriodicalId":106247,"journal":{"name":"Frontiers in Communications and Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Urban Air Mobility—A 6G Use Case?\",\"authors\":\"Shuja Ansari, Ahmad Taha , K. Dashtipour, Y. Sambo, Qammer H. Abbasi , Muhammad Ali Imran \",\"doi\":\"10.3389/frcmn.2021.729767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing popularity of Unmanned Aerial Vehicles (UAV) has resulted in exponential growth of the market owing to numerous applications that have been facilitated by advances in battery technology and wireless communications. Given the successes of UAVs thus far, researchers are already gearing towards aerial transport systems that consist of dense deployment of both UAVs and Personal Aerial Vehicles (PAVs) with human passengers. Although the fifth-generation mobile network (5G) key performance indicators have been optimised to support drone use cases for both high data rates and low latency applications, future aerial transport systems will require stricter network key performance indicators to support the expected massive deployment of aerial vehicles taking into account network capacity and distance between the base station and the aerial vehicles, among others. In this article, we present our perspective, vision, architecture, requirements and key performance indicators for future aerial wireless networks supported by 6G for Urban Air Mobility (UAM). Furthermore, we review key enabling technologies and discuss future challenges for incorporating aerial wireless networks in 6G.\",\"PeriodicalId\":106247,\"journal\":{\"name\":\"Frontiers in Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Communications and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frcmn.2021.729767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frcmn.2021.729767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于电池技术和无线通信的进步促进了许多应用,无人机(UAV)的日益普及导致了市场的指数增长。鉴于无人机迄今取得的成功,研究人员已经开始着手开发由无人机和搭载人类乘客的个人飞行器(pav)密集部署组成的空中运输系统。尽管第五代移动网络(5G)关键性能指标已经过优化,以支持无人机用例的高数据速率和低延迟应用,但考虑到网络容量和基站与飞行器之间的距离等因素,未来的空中运输系统将需要更严格的网络关键性能指标,以支持预期的无人机大规模部署。在本文中,我们提出了6G城市空中交通(UAM)支持的未来空中无线网络的观点、愿景、架构、要求和关键性能指标。此外,我们回顾了关键的使能技术,并讨论了在6G中整合空中无线网络的未来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Urban Air Mobility—A 6G Use Case?
The increasing popularity of Unmanned Aerial Vehicles (UAV) has resulted in exponential growth of the market owing to numerous applications that have been facilitated by advances in battery technology and wireless communications. Given the successes of UAVs thus far, researchers are already gearing towards aerial transport systems that consist of dense deployment of both UAVs and Personal Aerial Vehicles (PAVs) with human passengers. Although the fifth-generation mobile network (5G) key performance indicators have been optimised to support drone use cases for both high data rates and low latency applications, future aerial transport systems will require stricter network key performance indicators to support the expected massive deployment of aerial vehicles taking into account network capacity and distance between the base station and the aerial vehicles, among others. In this article, we present our perspective, vision, architecture, requirements and key performance indicators for future aerial wireless networks supported by 6G for Urban Air Mobility (UAM). Furthermore, we review key enabling technologies and discuss future challenges for incorporating aerial wireless networks in 6G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
期刊最新文献
Sailing into the future: technologies, challenges, and opportunities for maritime communication networks in the 6G era Efficient multiple unmanned aerial vehicle-assisted data collection strategy in power infrastructure construction Health of Things Melanoma Detection System—detection and segmentation of melanoma in dermoscopic images applied to edge computing using deep learning and fine-tuning models Cell signaling error control for reliable molecular communications Secure authentication in MIMO systems: exploring physical limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1