{"title":"光流场的贝叶斯聚类","authors":"J. Hoey, J. Little","doi":"10.1109/ICCV.2003.1238470","DOIUrl":null,"url":null,"abstract":"We present a method for unsupervised learning of classes of motions in video. We project optical flow fields to a complete, orthogonal, a-priori set of basis functions in a probabilistic fashion, which improves the estimation of the projections by incorporating uncertainties in the flows. We then cluster the projections using a mixture of feature-weighted Gaussians over optical flow fields. The resulting model extracts a concise probabilistic description of the major classes of optical flow present. The method is demonstrated on a video of a person's facial expressions.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Bayesian clustering of optical flow fields\",\"authors\":\"J. Hoey, J. Little\",\"doi\":\"10.1109/ICCV.2003.1238470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for unsupervised learning of classes of motions in video. We project optical flow fields to a complete, orthogonal, a-priori set of basis functions in a probabilistic fashion, which improves the estimation of the projections by incorporating uncertainties in the flows. We then cluster the projections using a mixture of feature-weighted Gaussians over optical flow fields. The resulting model extracts a concise probabilistic description of the major classes of optical flow present. The method is demonstrated on a video of a person's facial expressions.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a method for unsupervised learning of classes of motions in video. We project optical flow fields to a complete, orthogonal, a-priori set of basis functions in a probabilistic fashion, which improves the estimation of the projections by incorporating uncertainties in the flows. We then cluster the projections using a mixture of feature-weighted Gaussians over optical flow fields. The resulting model extracts a concise probabilistic description of the major classes of optical flow present. The method is demonstrated on a video of a person's facial expressions.