捆绑后验:在混合神经网络/HMM LVCSR中有效引入上下文依赖的方法

J. Rottland, G. Rigoll
{"title":"捆绑后验:在混合神经网络/HMM LVCSR中有效引入上下文依赖的方法","authors":"J. Rottland, G. Rigoll","doi":"10.1109/ICASSP.2000.861800","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Tied posteriors: an approach for effective introduction of context dependency in hybrid NN/HMM LVCSR\",\"authors\":\"J. Rottland, G. Rigoll\",\"doi\":\"10.1109/ICASSP.2000.861800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

提出了一种提高连接主义/HMM混合语音识别系统识别率的方法。同时,这种方法允许在混合框架中轻松引入依赖于上下文的模型。该方法基于标准的混合连接主义/HMM识别器,其中神经网络被训练来估计每个输入帧中所有手机的后验概率。在此方法中,使用神经网络的概率来替换捆绑混合HMM系统的码本。因此,由此产生的系统被称为后系。这种结构的优点是可以使用任意的hmm拓扑结构,并且在绑定混合系统中使用的所有上下文依赖和所有聚类技术都可以应用于这种混合语音识别系统。该方法已在《华尔街日报》(WSJ)数据库中进行了评估,结果表明,它在此任务上优于标准混合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tied posteriors: an approach for effective introduction of context dependency in hybrid NN/HMM LVCSR
This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-based multidimensional volume registration Generation of optimum signature base sequences for speech signals Denoising of human speech using combined acoustic and EM sensor signal processing New estimation technique for a class of chaotic signals Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1