{"title":"捆绑后验:在混合神经网络/HMM LVCSR中有效引入上下文依赖的方法","authors":"J. Rottland, G. Rigoll","doi":"10.1109/ICASSP.2000.861800","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Tied posteriors: an approach for effective introduction of context dependency in hybrid NN/HMM LVCSR\",\"authors\":\"J. Rottland, G. Rigoll\",\"doi\":\"10.1109/ICASSP.2000.861800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tied posteriors: an approach for effective introduction of context dependency in hybrid NN/HMM LVCSR
This paper presents a method to improve the recognition rate of hybrid connectionist/HMM speech recognition systems. At the same time this approach allows the easy introduction of context dependent models in the hybrid framework. The approach is based on a standard hybrid connectionist/HMM recognizer, in which the neural nets are trained to estimate the a posteriori probabilities for all phones in each input frame. In the approach presented here, the probabilities of the neural nets are used to replace the codebook of a tied-mixture HMM system. Therefore the resulting system is called tied posterior. The advantages of this structure are that an arbitrary HMM-topology can be used, and that all context dependency and all clustering techniques used in tied-mixture systems can be applied to this hybrid speech recognition system. The approach has been evaluated on the Wall Street Journal (WSJ) database, with the result, that it outperforms the standard hybrid approach on this task.