一种基于粒子群算法的自适应信道均衡器

Sandhya Yogi, K. Subhashini, J. Satapathy, Shiv Kumar
{"title":"一种基于粒子群算法的自适应信道均衡器","authors":"Sandhya Yogi, K. Subhashini, J. Satapathy, Shiv Kumar","doi":"10.1109/ICCCCT.2010.5670592","DOIUrl":null,"url":null,"abstract":"Here we have presented an alternate ANN structure called functional link ANN (FLANN) for channel equalization. In contrast to a feed forward ANN structure i.e. a multilayer perceptron (MLP), the FLANN is basically a single layer structure in which non-linearity is introduced by enhancing the input pattern with nonlinear function expansion. A novel method of training the FLANNs using PSO Algorithm is described. The neuron structure is modified to improve the performance of the equalizer. From the results it can be noted that the proposed structure improves the classification capability of the FLANNs in differentiating the received data.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel PSO based adaptive channel equalizer using a modified ANN structure\",\"authors\":\"Sandhya Yogi, K. Subhashini, J. Satapathy, Shiv Kumar\",\"doi\":\"10.1109/ICCCCT.2010.5670592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we have presented an alternate ANN structure called functional link ANN (FLANN) for channel equalization. In contrast to a feed forward ANN structure i.e. a multilayer perceptron (MLP), the FLANN is basically a single layer structure in which non-linearity is introduced by enhancing the input pattern with nonlinear function expansion. A novel method of training the FLANNs using PSO Algorithm is described. The neuron structure is modified to improve the performance of the equalizer. From the results it can be noted that the proposed structure improves the classification capability of the FLANNs in differentiating the received data.\",\"PeriodicalId\":250834,\"journal\":{\"name\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCCT.2010.5670592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这里,我们提出了一种用于信道均衡的替代神经网络结构,称为功能链路神经网络(FLANN)。与前馈神经网络结构(即多层感知器(MLP))相比,FLANN基本上是一个单层结构,其中通过非线性函数展开增强输入模式来引入非线性。提出了一种利用粒子群算法训练flann的新方法。为了提高均衡器的性能,对神经元结构进行了改进。从结果可以看出,该结构提高了flann在区分接收数据方面的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel PSO based adaptive channel equalizer using a modified ANN structure
Here we have presented an alternate ANN structure called functional link ANN (FLANN) for channel equalization. In contrast to a feed forward ANN structure i.e. a multilayer perceptron (MLP), the FLANN is basically a single layer structure in which non-linearity is introduced by enhancing the input pattern with nonlinear function expansion. A novel method of training the FLANNs using PSO Algorithm is described. The neuron structure is modified to improve the performance of the equalizer. From the results it can be noted that the proposed structure improves the classification capability of the FLANNs in differentiating the received data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face recognition system using multi layer feed Forward Neural Networks and Principal Component Analysis with variable learning rate VLSI design of mixed radix FFT Processor for MIMO OFDM in wireless communications Cellular phone based biomedical system for health care Intelligent based modelling, control and fault detection of chemical process Analysis of linear biconical antenna array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1