财务预测:波动性模型在中国股票市场的比较表现

Jingfeng Xu, Jian Liu, Haijian Zhao
{"title":"财务预测:波动性模型在中国股票市场的比较表现","authors":"Jingfeng Xu, Jian Liu, Haijian Zhao","doi":"10.1109/CSO.2011.136","DOIUrl":null,"url":null,"abstract":"This paper presents empirical tests and comparisons of GARCH family models and nonparametric models for predicting the volatility of Chinese stock markets. Since the volatility of financial asset returns often exhibits asymmetry, fat-tails and long-range memory property in the stock market, nonparametric models maybe have better performance. By the criteria of mean absolute forecast error (MAE), mean squared error (RMSE) and the hit rate (HR), empirical results show that support vector machine (SVM), a new nonparametric tool for regression estimation, outperforms GARCH family models (GARCH, EGARCH, FIGARCH), moving average and neural network in improving predictive accuracy.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Financial Forecasting: Comparative Performance of Volatility Models in Chinese Stock Markets\",\"authors\":\"Jingfeng Xu, Jian Liu, Haijian Zhao\",\"doi\":\"10.1109/CSO.2011.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents empirical tests and comparisons of GARCH family models and nonparametric models for predicting the volatility of Chinese stock markets. Since the volatility of financial asset returns often exhibits asymmetry, fat-tails and long-range memory property in the stock market, nonparametric models maybe have better performance. By the criteria of mean absolute forecast error (MAE), mean squared error (RMSE) and the hit rate (HR), empirical results show that support vector machine (SVM), a new nonparametric tool for regression estimation, outperforms GARCH family models (GARCH, EGARCH, FIGARCH), moving average and neural network in improving predictive accuracy.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对GARCH族模型和非参数模型在预测中国股市波动率方面进行了实证检验和比较。由于金融资产收益的波动性在股票市场中往往表现出不对称性、肥尾性和长期记忆性,因此非参数模型可能具有更好的表现。以平均绝对预测误差(MAE)、均方误差(RMSE)和准确率(HR)为标准,实证结果表明,支持向量机(SVM)作为一种新的非参数回归估计工具,在提高预测精度方面优于GARCH家族模型(GARCH、EGARCH、FIGARCH)、移动平均和神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Forecasting: Comparative Performance of Volatility Models in Chinese Stock Markets
This paper presents empirical tests and comparisons of GARCH family models and nonparametric models for predicting the volatility of Chinese stock markets. Since the volatility of financial asset returns often exhibits asymmetry, fat-tails and long-range memory property in the stock market, nonparametric models maybe have better performance. By the criteria of mean absolute forecast error (MAE), mean squared error (RMSE) and the hit rate (HR), empirical results show that support vector machine (SVM), a new nonparametric tool for regression estimation, outperforms GARCH family models (GARCH, EGARCH, FIGARCH), moving average and neural network in improving predictive accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1