通过大型语言模型实现目标定制的遗传改进

Sungmin Kang, S. Yoo
{"title":"通过大型语言模型实现目标定制的遗传改进","authors":"Sungmin Kang, S. Yoo","doi":"10.1109/GI59320.2023.00013","DOIUrl":null,"url":null,"abstract":"While Genetic Improvement (GI) is a useful paradigm to improve functional and nonfunctional aspects of software, existing techniques tended to use the same set of mutation operators for differing objectives, due to the difficulty of writing custom mutation operators. In this work, we suggest that Large Language Models (LLMs) can be used to generate objective-tailored mutants, expanding the possibilities of software optimizations that GI can perform. We further argue that LLMs and the GI process can benefit from the strengths of one another, and present a simple example demonstrating that LLMs can both improve the effectiveness of the GI optimization process, while also benefiting from the evaluation steps of GI. As a result, we believe that the combination of LLMs and GI has the capability to significantly aid developers in optimizing their software.","PeriodicalId":414492,"journal":{"name":"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)","volume":"35 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Objective-Tailored Genetic Improvement Through Large Language Models\",\"authors\":\"Sungmin Kang, S. Yoo\",\"doi\":\"10.1109/GI59320.2023.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Genetic Improvement (GI) is a useful paradigm to improve functional and nonfunctional aspects of software, existing techniques tended to use the same set of mutation operators for differing objectives, due to the difficulty of writing custom mutation operators. In this work, we suggest that Large Language Models (LLMs) can be used to generate objective-tailored mutants, expanding the possibilities of software optimizations that GI can perform. We further argue that LLMs and the GI process can benefit from the strengths of one another, and present a simple example demonstrating that LLMs can both improve the effectiveness of the GI optimization process, while also benefiting from the evaluation steps of GI. As a result, we believe that the combination of LLMs and GI has the capability to significantly aid developers in optimizing their software.\",\"PeriodicalId\":414492,\"journal\":{\"name\":\"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)\",\"volume\":\"35 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GI59320.2023.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM International Workshop on Genetic Improvement (GI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GI59320.2023.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虽然遗传改进(GI)是一个有用的范例,用于改进软件的功能和非功能方面,但由于编写自定义突变操作符的困难,现有技术倾向于为不同的目标使用相同的一组突变操作符。在这项工作中,我们建议使用大型语言模型(llm)来生成目标定制的突变体,扩展GI可以执行的软件优化的可能性。我们进一步论证了llm和GI过程可以从彼此的优势中受益,并给出了一个简单的例子,证明llm既可以提高GI优化过程的有效性,也可以从GI的评估步骤中受益。因此,我们相信llm和GI的结合能够极大地帮助开发人员优化他们的软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Objective-Tailored Genetic Improvement Through Large Language Models
While Genetic Improvement (GI) is a useful paradigm to improve functional and nonfunctional aspects of software, existing techniques tended to use the same set of mutation operators for differing objectives, due to the difficulty of writing custom mutation operators. In this work, we suggest that Large Language Models (LLMs) can be used to generate objective-tailored mutants, expanding the possibilities of software optimizations that GI can perform. We further argue that LLMs and the GI process can benefit from the strengths of one another, and present a simple example demonstrating that LLMs can both improve the effectiveness of the GI optimization process, while also benefiting from the evaluation steps of GI. As a result, we believe that the combination of LLMs and GI has the capability to significantly aid developers in optimizing their software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Improvement of OLC and H3 with Magpie DebugNS: Novelty Search for Finding Bugs in Simulators Updating Gin's profiler for current Java Generative Art via Grammatical Evolution Exploring the Use of Natural Language Processing Techniques for Enhancing Genetic Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1