UNIGE_SE @ PRELEARN:意大利语维基百科自动先决条件学习工具(短文)

Alessio Moggio, A. Parizzi
{"title":"UNIGE_SE @ PRELEARN:意大利语维基百科自动先决条件学习工具(短文)","authors":"Alessio Moggio, A. Parizzi","doi":"10.4000/BOOKS.AACCADEMIA.7553","DOIUrl":null,"url":null,"abstract":"The present paper describes the approach proposed by the UNIGE SE team to tackle the EVALITA 2020 shared task on Prerequisite Relation Learning (PRELEARN). We developed a neural network classifier that exploits features extracted both from raw text and the structure of the Wikipedia pages provided by task organisers as training sets. We participated in all four sub– tasks proposed by task organizers: the neural network was trained on different sets of features for each of the two training settings (i.e., raw and structured features) and evaluated in all proposed scenarios (i.e. in– and cross– domain). When evaluated on the official test sets, the system was able to get improvements compared to the provided baselines, even though it ranked third (out of three participants). This contribution also describes the interface we developed to compare multiple runs of our models. 1","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"UNIGE_SE @ PRELEARN: Utility for Automatic Prerequisite Learning from Italian Wikipedia (short paper)\",\"authors\":\"Alessio Moggio, A. Parizzi\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper describes the approach proposed by the UNIGE SE team to tackle the EVALITA 2020 shared task on Prerequisite Relation Learning (PRELEARN). We developed a neural network classifier that exploits features extracted both from raw text and the structure of the Wikipedia pages provided by task organisers as training sets. We participated in all four sub– tasks proposed by task organizers: the neural network was trained on different sets of features for each of the two training settings (i.e., raw and structured features) and evaluated in all proposed scenarios (i.e. in– and cross– domain). When evaluated on the official test sets, the system was able to get improvements compared to the provided baselines, even though it ranked third (out of three participants). This contribution also describes the interface we developed to compare multiple runs of our models. 1\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了UNIGE SE团队为解决EVALITA 2020关于前提关系学习(PRELEARN)的共享任务而提出的方法。我们开发了一个神经网络分类器,利用从原始文本和任务组织者提供的维基百科页面结构中提取的特征作为训练集。我们参与了任务组织者提出的所有四个子任务:神经网络在两种训练设置(即原始特征和结构化特征)的不同特征集上进行训练,并在所有提议的场景(即内域和跨域)中进行评估。当在官方测试集上进行评估时,与提供的基线相比,该系统能够得到改进,尽管它排名第三(在三个参与者中)。本文还描述了我们开发的用于比较模型的多个运行的接口。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNIGE_SE @ PRELEARN: Utility for Automatic Prerequisite Learning from Italian Wikipedia (short paper)
The present paper describes the approach proposed by the UNIGE SE team to tackle the EVALITA 2020 shared task on Prerequisite Relation Learning (PRELEARN). We developed a neural network classifier that exploits features extracted both from raw text and the structure of the Wikipedia pages provided by task organisers as training sets. We participated in all four sub– tasks proposed by task organizers: the neural network was trained on different sets of features for each of the two training settings (i.e., raw and structured features) and evaluated in all proposed scenarios (i.e. in– and cross– domain). When evaluated on the official test sets, the system was able to get improvements compared to the provided baselines, even though it ranked third (out of three participants). This contribution also describes the interface we developed to compare multiple runs of our models. 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1