用高阶向量语义在C语言中简化整个函数的向量化

Gil Rapaport, A. Zaks, Y. Ben-Asher
{"title":"用高阶向量语义在C语言中简化整个函数的向量化","authors":"Gil Rapaport, A. Zaks, Y. Ben-Asher","doi":"10.1109/IPDPSW.2015.37","DOIUrl":null,"url":null,"abstract":"Taking full advantage of SIMD instructions in C programs still requires tedious and non-portable programming using intrinsics, despite considerable efforts spent developing auto-vectorization capabilities in recent decades. Whole Function Vectorization (WFV) is a recent technique for extending the use of SIMD across entire functions. WFV has so far only been used in data-parallel languages such as OpenCL and ISPC. We propose a vector-oriented programming framework that facilitates WFV directly in C. We show that our framework achieves competitive performance to Open CL and ISPC while maintaining C's original syntax and semantics. This allows C programmers to gain better performance for their applications by improving SIMD utilization, without stepping out of C.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Streamlining Whole Function Vectorization in C Using Higher Order Vector Semantics\",\"authors\":\"Gil Rapaport, A. Zaks, Y. Ben-Asher\",\"doi\":\"10.1109/IPDPSW.2015.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking full advantage of SIMD instructions in C programs still requires tedious and non-portable programming using intrinsics, despite considerable efforts spent developing auto-vectorization capabilities in recent decades. Whole Function Vectorization (WFV) is a recent technique for extending the use of SIMD across entire functions. WFV has so far only been used in data-parallel languages such as OpenCL and ISPC. We propose a vector-oriented programming framework that facilitates WFV directly in C. We show that our framework achieves competitive performance to Open CL and ISPC while maintaining C's original syntax and semantics. This allows C programmers to gain better performance for their applications by improving SIMD utilization, without stepping out of C.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在C程序中充分利用SIMD指令仍然需要使用内在特性进行冗长且不可移植的编程,尽管近几十年来在开发自动向量化功能方面付出了相当大的努力。全函数矢量化(WFV)是将SIMD的使用扩展到整个函数的最新技术。到目前为止,WFV仅用于数据并行语言,如OpenCL和ISPC。我们提出了一个面向向量的编程框架,直接在C中促进WFV。我们表明,我们的框架在保持C的原始语法和语义的同时,实现了与Open CL和ISPC竞争的性能。这允许C程序员通过提高SIMD利用率来获得更好的应用程序性能,而无需走出C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Streamlining Whole Function Vectorization in C Using Higher Order Vector Semantics
Taking full advantage of SIMD instructions in C programs still requires tedious and non-portable programming using intrinsics, despite considerable efforts spent developing auto-vectorization capabilities in recent decades. Whole Function Vectorization (WFV) is a recent technique for extending the use of SIMD across entire functions. WFV has so far only been used in data-parallel languages such as OpenCL and ISPC. We propose a vector-oriented programming framework that facilitates WFV directly in C. We show that our framework achieves competitive performance to Open CL and ISPC while maintaining C's original syntax and semantics. This allows C programmers to gain better performance for their applications by improving SIMD utilization, without stepping out of C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1