{"title":"船舶垂直运动的自组织径向基函数神经网络建模","authors":"Xuejing Yang, Xiren Zhao","doi":"10.1109/ISSCAA.2006.1627566","DOIUrl":null,"url":null,"abstract":"Ships' vertical motion caused by random disturbances of ocean wave is unsafe for navigation and carrier planes' takeoff and landing. To reduce the vertical motion and give an effective control for ship's motion pose, an intelligent model of ship's vertical motion is needed. With the experimental data, based on the self-organizing radial basis function neural network, an intelligent model of vertical motion which can self-adapt with navigating speed, navigating course and ocean condition is presented. The automatic configuration and learning of the network are carried out by using a self-organizing learning algorithm. The results of simulation indicate that the performance of self-organizing radial basis function neural network is better than that of the radial basis function neural network without self-organizing learning","PeriodicalId":275436,"journal":{"name":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling of ship vertical motion with self-organizing radial basis function artificial neural network\",\"authors\":\"Xuejing Yang, Xiren Zhao\",\"doi\":\"10.1109/ISSCAA.2006.1627566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ships' vertical motion caused by random disturbances of ocean wave is unsafe for navigation and carrier planes' takeoff and landing. To reduce the vertical motion and give an effective control for ship's motion pose, an intelligent model of ship's vertical motion is needed. With the experimental data, based on the self-organizing radial basis function neural network, an intelligent model of vertical motion which can self-adapt with navigating speed, navigating course and ocean condition is presented. The automatic configuration and learning of the network are carried out by using a self-organizing learning algorithm. The results of simulation indicate that the performance of self-organizing radial basis function neural network is better than that of the radial basis function neural network without self-organizing learning\",\"PeriodicalId\":275436,\"journal\":{\"name\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2006.1627566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2006.1627566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of ship vertical motion with self-organizing radial basis function artificial neural network
Ships' vertical motion caused by random disturbances of ocean wave is unsafe for navigation and carrier planes' takeoff and landing. To reduce the vertical motion and give an effective control for ship's motion pose, an intelligent model of ship's vertical motion is needed. With the experimental data, based on the self-organizing radial basis function neural network, an intelligent model of vertical motion which can self-adapt with navigating speed, navigating course and ocean condition is presented. The automatic configuration and learning of the network are carried out by using a self-organizing learning algorithm. The results of simulation indicate that the performance of self-organizing radial basis function neural network is better than that of the radial basis function neural network without self-organizing learning