{"title":"欺诈检测的深度结构学习","authors":"Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, Jilong Wang","doi":"10.1109/ICDM.2018.00072","DOIUrl":null,"url":null,"abstract":"Fraud detection is of great importance because fraudulent behaviors may mislead consumers or bring huge losses to enterprises. Due to the lockstep feature of fraudulent behaviors, fraud detection problem can be viewed as finding suspicious dense blocks in the attributed bipartite graph. In reality, existing attribute-based methods are not adversarially robust, because fraudsters can take some camouflage actions to cover their behavior attributes as normal. More importantly, existing structural information based methods only consider shallow topology structure, making their effectiveness sensitive to the density of suspicious blocks. In this paper, we propose a novel deep structure learning model named DeepFD to differentiate normal users and suspicious users. DeepFD can preserve the non-linear graph structure and user behavior information simultaneously. Experimental results on different types of datasets demonstrate that DeepFD outperforms the state-of-the-art baselines.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Deep Structure Learning for Fraud Detection\",\"authors\":\"Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, Jilong Wang\",\"doi\":\"10.1109/ICDM.2018.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraud detection is of great importance because fraudulent behaviors may mislead consumers or bring huge losses to enterprises. Due to the lockstep feature of fraudulent behaviors, fraud detection problem can be viewed as finding suspicious dense blocks in the attributed bipartite graph. In reality, existing attribute-based methods are not adversarially robust, because fraudsters can take some camouflage actions to cover their behavior attributes as normal. More importantly, existing structural information based methods only consider shallow topology structure, making their effectiveness sensitive to the density of suspicious blocks. In this paper, we propose a novel deep structure learning model named DeepFD to differentiate normal users and suspicious users. DeepFD can preserve the non-linear graph structure and user behavior information simultaneously. Experimental results on different types of datasets demonstrate that DeepFD outperforms the state-of-the-art baselines.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fraud detection is of great importance because fraudulent behaviors may mislead consumers or bring huge losses to enterprises. Due to the lockstep feature of fraudulent behaviors, fraud detection problem can be viewed as finding suspicious dense blocks in the attributed bipartite graph. In reality, existing attribute-based methods are not adversarially robust, because fraudsters can take some camouflage actions to cover their behavior attributes as normal. More importantly, existing structural information based methods only consider shallow topology structure, making their effectiveness sensitive to the density of suspicious blocks. In this paper, we propose a novel deep structure learning model named DeepFD to differentiate normal users and suspicious users. DeepFD can preserve the non-linear graph structure and user behavior information simultaneously. Experimental results on different types of datasets demonstrate that DeepFD outperforms the state-of-the-art baselines.