聚类相关数据广义线性混合效应模型的双组分混合

D. Hall, Lihua Wang
{"title":"聚类相关数据广义线性混合效应模型的双组分混合","authors":"D. Hall, Lihua Wang","doi":"10.1191/1471082X05st090oa","DOIUrl":null,"url":null,"abstract":"Finite mixtures of generalized linear mixed effect models are presented to handle situations where within-cluster correlation and heterogeneity (subpopulations) exist simultaneously. For this class of model, we consider maximum likelihood (ML) as our main approach to estimation. Owing to the complexity of the marginal loglikelihood of this model, the EM algorithm is employed to facilitate computation. The major obstacle in this procedure is to integrate over the random effects’ distribution to evaluate the expectation in the E step. When assuming normally distributed random effects, we consider adaptive Gaussian quadrature to perform this integration numerically. We also discuss nonparametric ML estimation under a relaxation of the normality assumption on the random effects. Two real data sets are analysed to compare our proposed model with other existing models and illustrate our estimation methods.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Two-component mixtures of generalized linear mixed effects models for cluster correlated data\",\"authors\":\"D. Hall, Lihua Wang\",\"doi\":\"10.1191/1471082X05st090oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite mixtures of generalized linear mixed effect models are presented to handle situations where within-cluster correlation and heterogeneity (subpopulations) exist simultaneously. For this class of model, we consider maximum likelihood (ML) as our main approach to estimation. Owing to the complexity of the marginal loglikelihood of this model, the EM algorithm is employed to facilitate computation. The major obstacle in this procedure is to integrate over the random effects’ distribution to evaluate the expectation in the E step. When assuming normally distributed random effects, we consider adaptive Gaussian quadrature to perform this integration numerically. We also discuss nonparametric ML estimation under a relaxation of the normality assumption on the random effects. Two real data sets are analysed to compare our proposed model with other existing models and illustrate our estimation methods.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X05st090oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X05st090oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了广义线性混合效应模型的有限混合模型来处理集群内相关性和异质性(亚种群)同时存在的情况。对于这类模型,我们考虑最大似然(ML)作为我们的主要估计方法。由于该模型的边际对数似然比较复杂,为了便于计算,采用了EM算法。这个过程的主要障碍是对随机效应的分布进行积分,以评估E步中的期望。当假设正态分布随机效应时,我们考虑自适应高斯正交来进行数值积分。我们还讨论了随机效应正态性假设松弛下的非参数ML估计。通过对两个实际数据集的分析,将我们提出的模型与其他现有模型进行了比较,并说明了我们的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-component mixtures of generalized linear mixed effects models for cluster correlated data
Finite mixtures of generalized linear mixed effect models are presented to handle situations where within-cluster correlation and heterogeneity (subpopulations) exist simultaneously. For this class of model, we consider maximum likelihood (ML) as our main approach to estimation. Owing to the complexity of the marginal loglikelihood of this model, the EM algorithm is employed to facilitate computation. The major obstacle in this procedure is to integrate over the random effects’ distribution to evaluate the expectation in the E step. When assuming normally distributed random effects, we consider adaptive Gaussian quadrature to perform this integration numerically. We also discuss nonparametric ML estimation under a relaxation of the normality assumption on the random effects. Two real data sets are analysed to compare our proposed model with other existing models and illustrate our estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1