基于实例相关损失的无监督对象再识别

Qing Tang, K. Jo
{"title":"基于实例相关损失的无监督对象再识别","authors":"Qing Tang, K. Jo","doi":"10.1109/INDIN51773.2022.9976073","DOIUrl":null,"url":null,"abstract":"This paper studies the fully unsupervised object re-identification (re-ID) problem which can learn re-ID without any human-annotated labeled data. Recent works show that self-supervised momentum contrastive learning is an effective method for unsupervised object re-ID, but they neglect to optimize one important component - the similarity relationships among instances. Previous works focus on enforcing instance-to-centroid learning, which does not fully utilize the inter-instances information. Thus, we propose an Instances Correlation Loss (ICL) to enforce instance-to-instance learning in each training iteration. Experimental results show that the proposed ICL effectively boost the performance, which demonstrates that learning strategy is also a central importance to unsupervised re-ID task. Extensive experiments are performed on three mainstream person re-ID datasets and one vehicle re-ID dataset.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Object Re-identification via Instances Correlation Loss\",\"authors\":\"Qing Tang, K. Jo\",\"doi\":\"10.1109/INDIN51773.2022.9976073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the fully unsupervised object re-identification (re-ID) problem which can learn re-ID without any human-annotated labeled data. Recent works show that self-supervised momentum contrastive learning is an effective method for unsupervised object re-ID, but they neglect to optimize one important component - the similarity relationships among instances. Previous works focus on enforcing instance-to-centroid learning, which does not fully utilize the inter-instances information. Thus, we propose an Instances Correlation Loss (ICL) to enforce instance-to-instance learning in each training iteration. Experimental results show that the proposed ICL effectively boost the performance, which demonstrates that learning strategy is also a central importance to unsupervised re-ID task. Extensive experiments are performed on three mainstream person re-ID datasets and one vehicle re-ID dataset.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了完全无监督对象再识别(re-ID)问题,该问题可以在没有任何人工标注的标记数据的情况下学习re-ID。近年来的研究表明,自监督动量对比学习是一种有效的无监督对象再识别方法,但它们忽略了优化一个重要组成部分-实例之间的相似关系。以往的研究主要集中在实例到质心的学习上,没有充分利用实例间的信息。因此,我们提出了实例相关损失(ICL)来在每次训练迭代中强制实例到实例的学习。实验结果表明,所提出的ICL有效地提高了性能,这表明学习策略对于无监督重识别任务也是至关重要的。在3个主流的人再识别数据集和1个车辆再识别数据集上进行了大量的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Object Re-identification via Instances Correlation Loss
This paper studies the fully unsupervised object re-identification (re-ID) problem which can learn re-ID without any human-annotated labeled data. Recent works show that self-supervised momentum contrastive learning is an effective method for unsupervised object re-ID, but they neglect to optimize one important component - the similarity relationships among instances. Previous works focus on enforcing instance-to-centroid learning, which does not fully utilize the inter-instances information. Thus, we propose an Instances Correlation Loss (ICL) to enforce instance-to-instance learning in each training iteration. Experimental results show that the proposed ICL effectively boost the performance, which demonstrates that learning strategy is also a central importance to unsupervised re-ID task. Extensive experiments are performed on three mainstream person re-ID datasets and one vehicle re-ID dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1