无人FA类人机器人稳定运动控制研究

K. Sung, Sung-Won Jung, M. Park, Y. Jeong, Woo-Song Lee, I. Park, Sung-Hyun Han
{"title":"无人FA类人机器人稳定运动控制研究","authors":"K. Sung, Sung-Won Jung, M. Park, Y. Jeong, Woo-Song Lee, I. Park, Sung-Hyun Han","doi":"10.1109/ICCAS.2013.6703948","DOIUrl":null,"url":null,"abstract":"We present a new technology for real-time walking of a biped robot. A biped robot necessitates achieving stabilization for real time walking since it has basic problems such as structural stability. In this paper, a robust control algorithm for stable walking is proposed based the ground reaction forces, which are measured using force sensors during walking, and the environmental conditions are estimated from these situation. From this information the robot selects the proper motion and overcomes ground irregularities effectively. In order to generate the proper angel of the joint. The performance of the proposed algorithm is verified by simulation and experiments for a 20-DOFs humanoid robot.","PeriodicalId":415263,"journal":{"name":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on stable motion control of humanoid robot for unmanned FA\",\"authors\":\"K. Sung, Sung-Won Jung, M. Park, Y. Jeong, Woo-Song Lee, I. Park, Sung-Hyun Han\",\"doi\":\"10.1109/ICCAS.2013.6703948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new technology for real-time walking of a biped robot. A biped robot necessitates achieving stabilization for real time walking since it has basic problems such as structural stability. In this paper, a robust control algorithm for stable walking is proposed based the ground reaction forces, which are measured using force sensors during walking, and the environmental conditions are estimated from these situation. From this information the robot selects the proper motion and overcomes ground irregularities effectively. In order to generate the proper angel of the joint. The performance of the proposed algorithm is verified by simulation and experiments for a 20-DOFs humanoid robot.\",\"PeriodicalId\":415263,\"journal\":{\"name\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2013.6703948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2013.6703948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种实现双足机器人实时行走的新技术。由于双足机器人存在结构稳定性等基本问题,因此需要实现实时行走的稳定性。本文提出了一种基于地面反作用力的稳定行走鲁棒控制算法,该算法利用力传感器测量行走过程中的地面反作用力,并根据地面反作用力估计行走过程中的环境条件。机器人根据这些信息选择合适的运动,有效地克服地面的不规则性。为了产生合适的关节角度。通过20自由度仿人机器人的仿真和实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on stable motion control of humanoid robot for unmanned FA
We present a new technology for real-time walking of a biped robot. A biped robot necessitates achieving stabilization for real time walking since it has basic problems such as structural stability. In this paper, a robust control algorithm for stable walking is proposed based the ground reaction forces, which are measured using force sensors during walking, and the environmental conditions are estimated from these situation. From this information the robot selects the proper motion and overcomes ground irregularities effectively. In order to generate the proper angel of the joint. The performance of the proposed algorithm is verified by simulation and experiments for a 20-DOFs humanoid robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of one-legged jumping robot with artificial musculoskeletal system Development of a novel FES control system based on treadmill motor current variation for gait rehabilitation of hemiplegic patients after stroke Characteristic analysis of visual evoked potentials and posterior dominant rhythm by use of EEG model Optical flow estimation method to determine compensation by multi resolution of hierarchical structure Design and analysis of a 6-DOF force/torque sensor for human gait analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1