{"title":"基于神经网络模型的COVID-19以来比特币价格预测","authors":"Zhiheng Jiang","doi":"10.1145/3556677.3556679","DOIUrl":null,"url":null,"abstract":"After Covid-19 swept the globe and bitcoin prices suddenly soared, machine learnings were used to predict the trend of bitcoin prices, but these studies were lack of performance analysis in different time-scale span. In this paper, three neural network models are designed and used to forecast the price of bitcoin after the outbreak of COVID-19. The models A uses the high/low price, open/close price of four-days of bitcoin as input variables and the close price of the fifth day as target variable, the models B uses same variable as the model A and uses optimal weights, and the model C uses same structure as the model B, but adds the trading volume to the input variables. The results show that the model C may lower the difference between actual and calculated outputs, thus boosting the prediction accuracy. Also, it is found that the models that can work well when predicting bitcoin prices in a short time span can be obviously less precise when it comes to predicting bitcoin prices in a longer time span.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Bitcoin Price Since COVID-19 by Using Neural Network Models\",\"authors\":\"Zhiheng Jiang\",\"doi\":\"10.1145/3556677.3556679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After Covid-19 swept the globe and bitcoin prices suddenly soared, machine learnings were used to predict the trend of bitcoin prices, but these studies were lack of performance analysis in different time-scale span. In this paper, three neural network models are designed and used to forecast the price of bitcoin after the outbreak of COVID-19. The models A uses the high/low price, open/close price of four-days of bitcoin as input variables and the close price of the fifth day as target variable, the models B uses same variable as the model A and uses optimal weights, and the model C uses same structure as the model B, but adds the trading volume to the input variables. The results show that the model C may lower the difference between actual and calculated outputs, thus boosting the prediction accuracy. Also, it is found that the models that can work well when predicting bitcoin prices in a short time span can be obviously less precise when it comes to predicting bitcoin prices in a longer time span.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Bitcoin Price Since COVID-19 by Using Neural Network Models
After Covid-19 swept the globe and bitcoin prices suddenly soared, machine learnings were used to predict the trend of bitcoin prices, but these studies were lack of performance analysis in different time-scale span. In this paper, three neural network models are designed and used to forecast the price of bitcoin after the outbreak of COVID-19. The models A uses the high/low price, open/close price of four-days of bitcoin as input variables and the close price of the fifth day as target variable, the models B uses same variable as the model A and uses optimal weights, and the model C uses same structure as the model B, but adds the trading volume to the input variables. The results show that the model C may lower the difference between actual and calculated outputs, thus boosting the prediction accuracy. Also, it is found that the models that can work well when predicting bitcoin prices in a short time span can be obviously less precise when it comes to predicting bitcoin prices in a longer time span.