{"title":"使用机器学习解决线性规划模式","authors":"V. Raj","doi":"10.1109/PECCON55017.2022.9851115","DOIUrl":null,"url":null,"abstract":"In this research work, linear programming patterns with bounded variables are solved by Supervised Neural Network with back propagation (SNN). A decomposition of large scale optimization tasks into lower order tasks, in optimization problem, is proposed. Samples of linear programming problems (LPPs) are converted into linear programming patterns. The SNN is able to give correct solution to pattern classification. The novel approach of formulation of the linear programming pattern is important in this paradigm. The detailed experimental results are reported.","PeriodicalId":129147,"journal":{"name":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution to Linear Programming Patterns using Machine Learning\",\"authors\":\"V. Raj\",\"doi\":\"10.1109/PECCON55017.2022.9851115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, linear programming patterns with bounded variables are solved by Supervised Neural Network with back propagation (SNN). A decomposition of large scale optimization tasks into lower order tasks, in optimization problem, is proposed. Samples of linear programming problems (LPPs) are converted into linear programming patterns. The SNN is able to give correct solution to pattern classification. The novel approach of formulation of the linear programming pattern is important in this paradigm. The detailed experimental results are reported.\",\"PeriodicalId\":129147,\"journal\":{\"name\":\"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECCON55017.2022.9851115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECCON55017.2022.9851115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,利用反向传播监督神经网络(SNN)求解具有有界变量的线性规划模式。在优化问题中,提出了一种将大规模优化任务分解为低阶任务的方法。线性规划问题(LPPs)的样本被转换成线性规划模式。SNN能够正确地解决模式分类问题。在这个范例中,线性规划模式的新颖表述方法是很重要的。并给出了详细的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solution to Linear Programming Patterns using Machine Learning
In this research work, linear programming patterns with bounded variables are solved by Supervised Neural Network with back propagation (SNN). A decomposition of large scale optimization tasks into lower order tasks, in optimization problem, is proposed. Samples of linear programming problems (LPPs) are converted into linear programming patterns. The SNN is able to give correct solution to pattern classification. The novel approach of formulation of the linear programming pattern is important in this paradigm. The detailed experimental results are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Storage System with Artificial Neural Networks using PI Hybrid Controllers Review and Analysis of Techniques to Mitigate Sub Synchronous Resonance using FACTS Devices 12-Pulse Power Inverter with Fixed Switching Angle for Grid-connected PV Array TWO-STAGE VOLTAGE REGULATOR FED VOLTAGE CONTROL USING PIC MICRO CONTROLLER Performance Assessment of Grey Wolf Technique for AGC of Multi-source Intertied System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1