直接过滤的支持向量机数据约简

Hiroaki Ishiyama, M. Yamakita
{"title":"直接过滤的支持向量机数据约简","authors":"Hiroaki Ishiyama, M. Yamakita","doi":"10.1109/CCA.2014.6981568","DOIUrl":null,"url":null,"abstract":"In this paper, an approach for speeding up Direct Filter (DF), which is a method to compute optimal filters for nonlinear systems, is proposed. DF is a nonparametric state estimation method, where the filter is designed from the plant data directly. Direct filtering employs a clever strategy of averaging two nonlinear functions trained from the training data to obtain optimal filters for a restricted class of nonlinear systems, with the assumption that plenty of data is available. The filter can then be used to predict future states. While a clever idea, its nonparametric nature makes it slow. The authors propose to use Support Vector Machine (SVM) to suppress the size of data. Since SVM learns support vectors, the authors propose that the support vectors are the actual data of interest, and thus should be used for the nonlinear function estimation employed by the direct filter. Experimental results show good speedups with minimal degradation.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"601 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support vector machine data reduction for Direct Filter\",\"authors\":\"Hiroaki Ishiyama, M. Yamakita\",\"doi\":\"10.1109/CCA.2014.6981568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach for speeding up Direct Filter (DF), which is a method to compute optimal filters for nonlinear systems, is proposed. DF is a nonparametric state estimation method, where the filter is designed from the plant data directly. Direct filtering employs a clever strategy of averaging two nonlinear functions trained from the training data to obtain optimal filters for a restricted class of nonlinear systems, with the assumption that plenty of data is available. The filter can then be used to predict future states. While a clever idea, its nonparametric nature makes it slow. The authors propose to use Support Vector Machine (SVM) to suppress the size of data. Since SVM learns support vectors, the authors propose that the support vectors are the actual data of interest, and thus should be used for the nonlinear function estimation employed by the direct filter. Experimental results show good speedups with minimal degradation.\",\"PeriodicalId\":205599,\"journal\":{\"name\":\"2014 IEEE Conference on Control Applications (CCA)\",\"volume\":\"601 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2014.6981568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直接滤波是一种计算非线性系统最优滤波器的方法,本文提出了一种加速直接滤波的方法。DF是一种非参数状态估计方法,它直接从工厂数据设计滤波器。直接滤波采用了一种聪明的策略,即从训练数据中训练出的两个非线性函数的平均值,以获得限制类非线性系统的最优滤波器,假设有大量的数据可用。过滤器可以用来预测未来的状态。虽然这是一个聪明的想法,但它的非参数性质使它很慢。作者提出使用支持向量机(SVM)来抑制数据的大小。由于支持向量机学习支持向量,作者提出支持向量是实际感兴趣的数据,因此应该用于直接滤波器所使用的非线性函数估计。实验结果表明,在最小的退化情况下,具有良好的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support vector machine data reduction for Direct Filter
In this paper, an approach for speeding up Direct Filter (DF), which is a method to compute optimal filters for nonlinear systems, is proposed. DF is a nonparametric state estimation method, where the filter is designed from the plant data directly. Direct filtering employs a clever strategy of averaging two nonlinear functions trained from the training data to obtain optimal filters for a restricted class of nonlinear systems, with the assumption that plenty of data is available. The filter can then be used to predict future states. While a clever idea, its nonparametric nature makes it slow. The authors propose to use Support Vector Machine (SVM) to suppress the size of data. Since SVM learns support vectors, the authors propose that the support vectors are the actual data of interest, and thus should be used for the nonlinear function estimation employed by the direct filter. Experimental results show good speedups with minimal degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and model predictive control of oil wells with Electric Submersible Pumps Adaptive control of permanent magnet synchronous motor with constrained reference current exploiting backstepping methodology Multi-robot mixing of nonholonomic mobile robots Predictive control system design with adaptive output estimator for non-uniformly sampled multi-rate systems and its application to liquid level control Design and application of a data-driven PID controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1