不完全依从性随机实验中放宽排除限制的似然分析

Andrea Mercatanti
{"title":"不完全依从性随机实验中放宽排除限制的似然分析","authors":"Andrea Mercatanti","doi":"10.2139/SSRN.1290514","DOIUrl":null,"url":null,"abstract":"This paper examines the problem of relaxing the exclusion restriction for the evaluation of causal effects in randomized experiments with imperfect compliance. Exclusion restriction is a relevant assumption for identifying causal effects by the nonparametric instrumental variables technique, in which the template of a randomized experiment with imperfect compliance represents a natural parametric extension. However, the full relaxation of the exclusion restriction yields likelihood functions characterized by the presence of mixtures of distributions. This complicates a likelihood-based analysis because it implies partially identified models and more than one maximum likelihood point. We consider the model identifiability when the outcome distributions of various compliance states are in the same parametric class. A two-step estimation procedure based on detecting the root closest to the method of moments estimate of the parameter vector is proposed and analyzed in detail under normally distributed outcomes. An economic example with real data on return to schooling concludes the paper.","PeriodicalId":142467,"journal":{"name":"Labor: Human Capital","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"A Likelihood-Based Analysis for Relaxing the Exclusion Restriction in Randomized Experiments with Imperfect Compliance\",\"authors\":\"Andrea Mercatanti\",\"doi\":\"10.2139/SSRN.1290514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the problem of relaxing the exclusion restriction for the evaluation of causal effects in randomized experiments with imperfect compliance. Exclusion restriction is a relevant assumption for identifying causal effects by the nonparametric instrumental variables technique, in which the template of a randomized experiment with imperfect compliance represents a natural parametric extension. However, the full relaxation of the exclusion restriction yields likelihood functions characterized by the presence of mixtures of distributions. This complicates a likelihood-based analysis because it implies partially identified models and more than one maximum likelihood point. We consider the model identifiability when the outcome distributions of various compliance states are in the same parametric class. A two-step estimation procedure based on detecting the root closest to the method of moments estimate of the parameter vector is proposed and analyzed in detail under normally distributed outcomes. An economic example with real data on return to schooling concludes the paper.\",\"PeriodicalId\":142467,\"journal\":{\"name\":\"Labor: Human Capital\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Labor: Human Capital\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.1290514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Labor: Human Capital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.1290514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

本文探讨了在不完全顺应性随机实验中放松排除限制评价因果效应的问题。排除限制是利用非参数工具变量技术识别因果效应的一个相关假设,其中具有不完全顺应性的随机实验模板代表了自然的参数扩展。然而,排除限制的完全放松产生的似然函数的特征是存在混合分布。这使基于似然的分析变得复杂,因为它意味着部分确定的模型和多个最大似然点。当各种柔性状态的结果分布在同一参数类中时,我们考虑了模型的可辨识性。提出了一种基于检测最接近矩估计方法的两步估计方法,并对正态分布结果进行了详细分析。最后,本文给出了一个关于重返学校的真实数据的经济例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Likelihood-Based Analysis for Relaxing the Exclusion Restriction in Randomized Experiments with Imperfect Compliance
This paper examines the problem of relaxing the exclusion restriction for the evaluation of causal effects in randomized experiments with imperfect compliance. Exclusion restriction is a relevant assumption for identifying causal effects by the nonparametric instrumental variables technique, in which the template of a randomized experiment with imperfect compliance represents a natural parametric extension. However, the full relaxation of the exclusion restriction yields likelihood functions characterized by the presence of mixtures of distributions. This complicates a likelihood-based analysis because it implies partially identified models and more than one maximum likelihood point. We consider the model identifiability when the outcome distributions of various compliance states are in the same parametric class. A two-step estimation procedure based on detecting the root closest to the method of moments estimate of the parameter vector is proposed and analyzed in detail under normally distributed outcomes. An economic example with real data on return to schooling concludes the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Doughboys Network: Social Interactions and the Employment of World War I Veterans Low-Skill Employment and the Changing Economy of Rural America Grade Inflation, Social Background, and Labour Market Matching Schools Before Tools? The Role of Human Capital in a Market Economy Education, Innovation, and Long-Run Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1