Polyvios Pratikakis, H. Vandierendonck, Spyros Lyberis, Dimitrios S. Nikolopoulos
{"title":"确定性任务并行的编程模型","authors":"Polyvios Pratikakis, H. Vandierendonck, Spyros Lyberis, Dimitrios S. Nikolopoulos","doi":"10.1145/1988915.1988918","DOIUrl":null,"url":null,"abstract":"The currently dominant programming models to write software for multicore processors use threads that run over shared memory. However, as the core count increases, cache coherency protocols get very complex and ineffective, and maintaining a shared memory abstraction becomes expensive and impractical. Moreover, writing multithreaded programs is notoriously difficult, as the programmer needs to reason about all the possible thread interleavings and interactions, including the myriad of implicit, non-obvious, and often unpredictable thread interactions through shared memory. Overall, as processors get more cores and parallel software becomes mainstream, the shared memory model reaches its limits regarding ease of programming and efficiency.\n This position paper presents two ideas aiming to solve the problem. First, we restrict the way the programmer expresses parallelism: The program is a collection of possibly recursive tasks, where each task is atomic and cannot communicate with any other task during its execution. Second, we relax the requirement for coherent shared memory: Each task defines its memory footprint, and is guaranteed to have exclusive access to that memory during its execution. Using this model, we can then define a runtime system that transparently performs the data transfers required among cores without cache coherency, and also produces a deterministic execution of the program, provably equivalent to its sequential elision.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A programming model for deterministic task parallelism\",\"authors\":\"Polyvios Pratikakis, H. Vandierendonck, Spyros Lyberis, Dimitrios S. Nikolopoulos\",\"doi\":\"10.1145/1988915.1988918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The currently dominant programming models to write software for multicore processors use threads that run over shared memory. However, as the core count increases, cache coherency protocols get very complex and ineffective, and maintaining a shared memory abstraction becomes expensive and impractical. Moreover, writing multithreaded programs is notoriously difficult, as the programmer needs to reason about all the possible thread interleavings and interactions, including the myriad of implicit, non-obvious, and often unpredictable thread interactions through shared memory. Overall, as processors get more cores and parallel software becomes mainstream, the shared memory model reaches its limits regarding ease of programming and efficiency.\\n This position paper presents two ideas aiming to solve the problem. First, we restrict the way the programmer expresses parallelism: The program is a collection of possibly recursive tasks, where each task is atomic and cannot communicate with any other task during its execution. Second, we relax the requirement for coherent shared memory: Each task defines its memory footprint, and is guaranteed to have exclusive access to that memory during its execution. Using this model, we can then define a runtime system that transparently performs the data transfers required among cores without cache coherency, and also produces a deterministic execution of the program, provably equivalent to its sequential elision.\",\"PeriodicalId\":130040,\"journal\":{\"name\":\"Workshop on Memory System Performance and Correctness\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory System Performance and Correctness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1988915.1988918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1988915.1988918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A programming model for deterministic task parallelism
The currently dominant programming models to write software for multicore processors use threads that run over shared memory. However, as the core count increases, cache coherency protocols get very complex and ineffective, and maintaining a shared memory abstraction becomes expensive and impractical. Moreover, writing multithreaded programs is notoriously difficult, as the programmer needs to reason about all the possible thread interleavings and interactions, including the myriad of implicit, non-obvious, and often unpredictable thread interactions through shared memory. Overall, as processors get more cores and parallel software becomes mainstream, the shared memory model reaches its limits regarding ease of programming and efficiency.
This position paper presents two ideas aiming to solve the problem. First, we restrict the way the programmer expresses parallelism: The program is a collection of possibly recursive tasks, where each task is atomic and cannot communicate with any other task during its execution. Second, we relax the requirement for coherent shared memory: Each task defines its memory footprint, and is guaranteed to have exclusive access to that memory during its execution. Using this model, we can then define a runtime system that transparently performs the data transfers required among cores without cache coherency, and also produces a deterministic execution of the program, provably equivalent to its sequential elision.