一种基于核的非平稳信号估计系统

K. Jemili, J. Westerkamp
{"title":"一种基于核的非平稳信号估计系统","authors":"K. Jemili, J. Westerkamp","doi":"10.1109/ICASSP.1995.479721","DOIUrl":null,"url":null,"abstract":"A new signal estimation technique is introduced for highly non-stationary signals. The system uses the wavelet transform to extract time-frequency components of the signal plus noise, followed by a radial basis function neural network that adaptively estimates the underlying signal. The method is applied to the visual evoked potential (EP) signal, which is a transient signal corrupted by the ongoing electroencephalogram (EEG) noise, with a signal-to-noise ratio often less than -6 dB. The proposed system gives good time-varying estimates of the EP, while suppressing the on-going EEG.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A kernel based system for the estimation of non-stationary signals\",\"authors\":\"K. Jemili, J. Westerkamp\",\"doi\":\"10.1109/ICASSP.1995.479721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new signal estimation technique is introduced for highly non-stationary signals. The system uses the wavelet transform to extract time-frequency components of the signal plus noise, followed by a radial basis function neural network that adaptively estimates the underlying signal. The method is applied to the visual evoked potential (EP) signal, which is a transient signal corrupted by the ongoing electroencephalogram (EEG) noise, with a signal-to-noise ratio often less than -6 dB. The proposed system gives good time-varying estimates of the EP, while suppressing the on-going EEG.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.479721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对高度非平稳信号,提出了一种新的信号估计方法。该系统使用小波变换提取信号加噪声的时频分量,然后使用径向基函数神经网络自适应估计底层信号。该方法应用于视觉诱发电位(EP)信号,该信号是一种被持续脑电图(EEG)噪声破坏的瞬态信号,信噪比通常小于-6 dB。该系统在抑制正在进行的脑电信号的同时,对脑电信号进行了良好的时变估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A kernel based system for the estimation of non-stationary signals
A new signal estimation technique is introduced for highly non-stationary signals. The system uses the wavelet transform to extract time-frequency components of the signal plus noise, followed by a radial basis function neural network that adaptively estimates the underlying signal. The method is applied to the visual evoked potential (EP) signal, which is a transient signal corrupted by the ongoing electroencephalogram (EEG) noise, with a signal-to-noise ratio often less than -6 dB. The proposed system gives good time-varying estimates of the EP, while suppressing the on-going EEG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1