OPFE:私有功能评估的外包计算

Henry Carter, Patrick Traynor
{"title":"OPFE:私有功能评估的外包计算","authors":"Henry Carter, Patrick Traynor","doi":"10.1504/IJICS.2019.10024485","DOIUrl":null,"url":null,"abstract":"Outsourced secure multiparty computation (SMC) protocols allow resource-constrained devices to execute input-private computation with great efficiency. Unfortunately, existing outsourced SMC protocols require that all parties know the function being evaluated, precluding applications where the function itself must remain private. We develop the first linear-complexity protocols for outsourcing private function evaluation (PFE), SMC protocols that provide input and function privacy. Assuming a semi-honest function holder, we build on existing two-party PFE constructions to develop outsourced protocols that are secure against a semi-honest, covert, or malicious outsourcing server and malicious mobile participants. To do this, we develop a garbling technique for combining public and private sub-circuits in a single computation. This allows us to apply auxiliary checks for malicious behaviour using only free-XOR gates. These protocols demonstrate the feasibility of outsourced PFE and provide a first step towards privacy-preserving applications for use in cloud computing.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"OPFE: Outsourcing Computation for Private Function Evaluation\",\"authors\":\"Henry Carter, Patrick Traynor\",\"doi\":\"10.1504/IJICS.2019.10024485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outsourced secure multiparty computation (SMC) protocols allow resource-constrained devices to execute input-private computation with great efficiency. Unfortunately, existing outsourced SMC protocols require that all parties know the function being evaluated, precluding applications where the function itself must remain private. We develop the first linear-complexity protocols for outsourcing private function evaluation (PFE), SMC protocols that provide input and function privacy. Assuming a semi-honest function holder, we build on existing two-party PFE constructions to develop outsourced protocols that are secure against a semi-honest, covert, or malicious outsourcing server and malicious mobile participants. To do this, we develop a garbling technique for combining public and private sub-circuits in a single computation. This allows us to apply auxiliary checks for malicious behaviour using only free-XOR gates. These protocols demonstrate the feasibility of outsourced PFE and provide a first step towards privacy-preserving applications for use in cloud computing.\",\"PeriodicalId\":164016,\"journal\":{\"name\":\"Int. J. Inf. Comput. Secur.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJICS.2019.10024485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2019.10024485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

外包安全多方计算(SMC)协议允许资源受限的设备以极高的效率执行输入私有计算。不幸的是,现有的外包SMC协议要求所有各方都知道正在评估的功能,从而排除了功能本身必须保持私有的应用程序。我们开发了第一个用于外包私有功能评估(PFE)的线性复杂性协议,提供输入和功能隐私的SMC协议。假设一个半诚实的功能持有人,我们在现有的两方PFE结构的基础上开发外包协议,这些协议对半诚实、隐蔽或恶意的外包服务器和恶意的移动参与者是安全的。为了做到这一点,我们开发了一种在一次计算中结合公共和私有子电路的乱码技术。这允许我们仅使用自由异或门对恶意行为应用辅助检查。这些协议证明了外包PFE的可行性,并向用于云计算的隐私保护应用程序迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OPFE: Outsourcing Computation for Private Function Evaluation
Outsourced secure multiparty computation (SMC) protocols allow resource-constrained devices to execute input-private computation with great efficiency. Unfortunately, existing outsourced SMC protocols require that all parties know the function being evaluated, precluding applications where the function itself must remain private. We develop the first linear-complexity protocols for outsourcing private function evaluation (PFE), SMC protocols that provide input and function privacy. Assuming a semi-honest function holder, we build on existing two-party PFE constructions to develop outsourced protocols that are secure against a semi-honest, covert, or malicious outsourcing server and malicious mobile participants. To do this, we develop a garbling technique for combining public and private sub-circuits in a single computation. This allows us to apply auxiliary checks for malicious behaviour using only free-XOR gates. These protocols demonstrate the feasibility of outsourced PFE and provide a first step towards privacy-preserving applications for use in cloud computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1