红巨星和超巨星磁场:光谱偏差观测结果分析

Сергей Плачинда, Варвара Бутковская, Д. В. Шуляк, Николай Николаевич Панков, В. В. Цымбал
{"title":"红巨星和超巨星磁场:光谱偏差观测结果分析","authors":"Сергей Плачинда, Варвара Бутковская, Д. В. Шуляк, Николай Николаевич Панков, В. В. Цымбал","doi":"10.31059/izcrao-vol118-iss1-pp31-41","DOIUrl":null,"url":null,"abstract":"1. Представлен обзор полученных разными авторами в результате высокоточных спектрополяриметрических наблюдений F0 – M0 гигантов и сверхгигантов. На сегодняшний день слабые магнитные поля зарегистрированы почти у четырех десятков медленно вращающихся красных гигантов: магнитное поле у некоторых объектов достигает нескольких десятков гаусс. Спектрополяриметрическая база наблюдений красных сверхгигантов включает три десятка объектов. Магнитное поле было обнаружено у трети. По наблюдениям в Крыму магнитное поле у сверхгиганта ε Gem достигает десятка гаусс. Поскольку магнитное поле вморожено в плазму, а звезды после главной последовательности значительно увеличивают свои размеры, ожидается, что без генерации и усиления магнитного поля магнитное поле гигантов не должно превышать один гаусс, а магнитное поле сверхгигантов будет составлять сотые и тысячные доли гаусса. Тем не менее индукция зарегистрированных магнитных полей у этих объектов значительно превышает названные. На основе литературных данных и крымских наблюдений подтверждается вывод, что генерация и усиление магнитного поля происходит с помощью работы динамо-механизмов на всех стадиях эволюции звезд с конвективными оболочками, начиная с эпохи формирования звезды (тип T Tauri) до Главной последовательности и заканчивая ее конечным состоянием сверхгиганта, перед трансформацией в объект с вырожденным состоянием материи.2. Как известно из физики Солнца, неоднородность магнитного поля указывает на наличие физических условий для работы динамо-механизмов. В настоящей работе приводятся результаты вычисления продольного компонента магнитного поля и факт обнаружения его неоднородности у гиганта δ CrB.3. Крымская методика обработки спектрополяриметрических наблюдений звезд (SL – Single Line), отличительной особенностью которой является использование центров тяжести спектральных линий для вычисления магнитного поля по каждой линии в отдельности, позволила разработать и применить методику анализа изменения величины магнитного поля с глубиной в атмосфере звезды. В результате выполненного анализа не было обнаружено статистически достоверных признаков наличия радиальных вариаций магнитного поля с глубиной в атмосфере гиганта δ CrB при том уровне отношения сигнал/шум, который присутствовал у наблюдательного материала. Сделан вывод о необходимости использования большего числа наблюдений для получения статистически обоснованного заключения о присутствии или отсутствии неоднородности поля с глубиной в атмосфере δ CrB.","PeriodicalId":446402,"journal":{"name":"Известия Крымской астрофизической обсерватории","volume":"124 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Магнитное поле красных гигантов и сверхгигантов: обзор результатов спектрополяриметрических наблюдений\",\"authors\":\"Сергей Плачинда, Варвара Бутковская, Д. В. Шуляк, Николай Николаевич Панков, В. В. Цымбал\",\"doi\":\"10.31059/izcrao-vol118-iss1-pp31-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. Представлен обзор полученных разными авторами в результате высокоточных спектрополяриметрических наблюдений F0 – M0 гигантов и сверхгигантов. На сегодняшний день слабые магнитные поля зарегистрированы почти у четырех десятков медленно вращающихся красных гигантов: магнитное поле у некоторых объектов достигает нескольких десятков гаусс. Спектрополяриметрическая база наблюдений красных сверхгигантов включает три десятка объектов. Магнитное поле было обнаружено у трети. По наблюдениям в Крыму магнитное поле у сверхгиганта ε Gem достигает десятка гаусс. Поскольку магнитное поле вморожено в плазму, а звезды после главной последовательности значительно увеличивают свои размеры, ожидается, что без генерации и усиления магнитного поля магнитное поле гигантов не должно превышать один гаусс, а магнитное поле сверхгигантов будет составлять сотые и тысячные доли гаусса. Тем не менее индукция зарегистрированных магнитных полей у этих объектов значительно превышает названные. На основе литературных данных и крымских наблюдений подтверждается вывод, что генерация и усиление магнитного поля происходит с помощью работы динамо-механизмов на всех стадиях эволюции звезд с конвективными оболочками, начиная с эпохи формирования звезды (тип T Tauri) до Главной последовательности и заканчивая ее конечным состоянием сверхгиганта, перед трансформацией в объект с вырожденным состоянием материи.2. Как известно из физики Солнца, неоднородность магнитного поля указывает на наличие физических условий для работы динамо-механизмов. В настоящей работе приводятся результаты вычисления продольного компонента магнитного поля и факт обнаружения его неоднородности у гиганта δ CrB.3. Крымская методика обработки спектрополяриметрических наблюдений звезд (SL – Single Line), отличительной особенностью которой является использование центров тяжести спектральных линий для вычисления магнитного поля по каждой линии в отдельности, позволила разработать и применить методику анализа изменения величины магнитного поля с глубиной в атмосфере звезды. В результате выполненного анализа не было обнаружено статистически достоверных признаков наличия радиальных вариаций магнитного поля с глубиной в атмосфере гиганта δ CrB при том уровне отношения сигнал/шум, который присутствовал у наблюдательного материала. Сделан вывод о необходимости использования большего числа наблюдений для получения статистически обоснованного заключения о присутствии или отсутствии неоднородности поля с глубиной в атмосфере δ CrB.\",\"PeriodicalId\":446402,\"journal\":{\"name\":\"Известия Крымской астрофизической обсерватории\",\"volume\":\"124 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Известия Крымской астрофизической обсерватории\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31059/izcrao-vol118-iss1-pp31-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Известия Крымской астрофизической обсерватории","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31059/izcrao-vol118-iss1-pp31-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1. 在F0 - M0巨型和超级巨星的高精度光谱偏差观测中,不同作者的评论如下。今天,近40个缓慢旋转的红巨星报告了弱磁场:一些物体的磁场高达几十个高斯。红巨星光谱偏振观测数据库由30多个物体组成。三分之一的磁场被发现。据克里米亚观察,超级巨星Gem的磁场高达10高斯。由于磁场冻结在等离子体中,主序后的恒星大大增加,预计如果没有磁场的产生和放大,巨人的磁场不应超过一个高斯,超大质量磁场将是高斯的百分之一和千分之一。然而,这些物体中记录的磁场的归纳远远超过了指定的磁场。基于文学监控数据和克里米亚证实结论,生成并加强磁场发生用发电机的工作机制上各个时代自恒星演化阶段和对流外壳形成主序前星(tts)前超级巨星状态转变到她的四肢与退化материи.2状态对象。正如太阳物理学所知,磁场的不均匀性表明发电机工作的物理条件。本文提供了磁场纵向成分的计算结果,并发现了巨大的crb 3的不均匀性。克里米亚光谱偏差观测技术(SL - Single Line),其独特之处在于利用光谱线的重心分别计算每条线的磁场值,从而开发和应用了一种分析磁场变化的方法。由于所做的分析,没有统计证据表明,在观测材料中存在的信号/噪声关系水平下,存在巨大的CrB大气深处的径向磁场变异。我们得出的结论是,需要使用更多的观测来获得关于大气层深处磁场存在或无不均匀性的统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Магнитное поле красных гигантов и сверхгигантов: обзор результатов спектрополяриметрических наблюдений
1. Представлен обзор полученных разными авторами в результате высокоточных спектрополяриметрических наблюдений F0 – M0 гигантов и сверхгигантов. На сегодняшний день слабые магнитные поля зарегистрированы почти у четырех десятков медленно вращающихся красных гигантов: магнитное поле у некоторых объектов достигает нескольких десятков гаусс. Спектрополяриметрическая база наблюдений красных сверхгигантов включает три десятка объектов. Магнитное поле было обнаружено у трети. По наблюдениям в Крыму магнитное поле у сверхгиганта ε Gem достигает десятка гаусс. Поскольку магнитное поле вморожено в плазму, а звезды после главной последовательности значительно увеличивают свои размеры, ожидается, что без генерации и усиления магнитного поля магнитное поле гигантов не должно превышать один гаусс, а магнитное поле сверхгигантов будет составлять сотые и тысячные доли гаусса. Тем не менее индукция зарегистрированных магнитных полей у этих объектов значительно превышает названные. На основе литературных данных и крымских наблюдений подтверждается вывод, что генерация и усиление магнитного поля происходит с помощью работы динамо-механизмов на всех стадиях эволюции звезд с конвективными оболочками, начиная с эпохи формирования звезды (тип T Tauri) до Главной последовательности и заканчивая ее конечным состоянием сверхгиганта, перед трансформацией в объект с вырожденным состоянием материи.2. Как известно из физики Солнца, неоднородность магнитного поля указывает на наличие физических условий для работы динамо-механизмов. В настоящей работе приводятся результаты вычисления продольного компонента магнитного поля и факт обнаружения его неоднородности у гиганта δ CrB.3. Крымская методика обработки спектрополяриметрических наблюдений звезд (SL – Single Line), отличительной особенностью которой является использование центров тяжести спектральных линий для вычисления магнитного поля по каждой линии в отдельности, позволила разработать и применить методику анализа изменения величины магнитного поля с глубиной в атмосфере звезды. В результате выполненного анализа не было обнаружено статистически достоверных признаков наличия радиальных вариаций магнитного поля с глубиной в атмосфере гиганта δ CrB при том уровне отношения сигнал/шум, который присутствовал у наблюдательного материала. Сделан вывод о необходимости использования большего числа наблюдений для получения статистически обоснованного заключения о присутствии или отсутствии неоднородности поля с глубиной в атмосфере δ CrB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
О механизмах регулярного ускорения электронов индуцированным электрическим полем в солнечных вспышках Характеристики излучения полярных корональных дыр на Солнце в широком диапазоне радиоволн Пространственные и временные особенности поведения микроволнового и ультрафиолетового излучения в эруптивных событиях Исследование вспышечной активности звезды - красного карлика EV LAC на основе оригинальных наблюдений и с использованием данных наземных и космических обзоров Эксперименты по наблюдению Солнца с высоким пространственным разрешением на Башенном солнечном телескопе им. А.Б. Северного КрАО РАН
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1