{"title":"扩展GRASP和CAESAR软件的能力,分析和优化反射器系统的主动波束形成阵列馈源","authors":"M. Ivashina, O. Iupikov, W. Cappellen","doi":"10.1109/ICEAA.2010.5652962","DOIUrl":null,"url":null,"abstract":"This paper describes a numerical approach for the analysis of a reflector antenna system which is fed by a Phased Array Feed. This approach takes mutual interaction effects into account between the antenna array and the low noise amplifiers in the evaluation of the system sensitivity and optimization of the beamformer weights, and can be used when several signal and noise sources are present on the sky, ground, and inside the system itself. The described methodology has been applied to a practical PAF (comprising 144 tapered slot antennas operating from 1 to 1.75 GHz) which is installed at a 25-m reflector antenna. Comparison of numerical and experimental results shows a good agreement.","PeriodicalId":375707,"journal":{"name":"2010 International Conference on Electromagnetics in Advanced Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Extending the capabilities of the GRASP and CAESAR software to analyze and optimize active beamforming array feeds for reflector systems\",\"authors\":\"M. Ivashina, O. Iupikov, W. Cappellen\",\"doi\":\"10.1109/ICEAA.2010.5652962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a numerical approach for the analysis of a reflector antenna system which is fed by a Phased Array Feed. This approach takes mutual interaction effects into account between the antenna array and the low noise amplifiers in the evaluation of the system sensitivity and optimization of the beamformer weights, and can be used when several signal and noise sources are present on the sky, ground, and inside the system itself. The described methodology has been applied to a practical PAF (comprising 144 tapered slot antennas operating from 1 to 1.75 GHz) which is installed at a 25-m reflector antenna. Comparison of numerical and experimental results shows a good agreement.\",\"PeriodicalId\":375707,\"journal\":{\"name\":\"2010 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2010.5652962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2010.5652962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending the capabilities of the GRASP and CAESAR software to analyze and optimize active beamforming array feeds for reflector systems
This paper describes a numerical approach for the analysis of a reflector antenna system which is fed by a Phased Array Feed. This approach takes mutual interaction effects into account between the antenna array and the low noise amplifiers in the evaluation of the system sensitivity and optimization of the beamformer weights, and can be used when several signal and noise sources are present on the sky, ground, and inside the system itself. The described methodology has been applied to a practical PAF (comprising 144 tapered slot antennas operating from 1 to 1.75 GHz) which is installed at a 25-m reflector antenna. Comparison of numerical and experimental results shows a good agreement.