A. Mousavian, Z. J. Thompson, Byounghwak Lee, Alden N. Bradley, Milo Sprague, Yun-Shik Lee
{"title":"光激发超材料中等离子体诱导不透明的强场太赫兹控制","authors":"A. Mousavian, Z. J. Thompson, Byounghwak Lee, Alden N. Bradley, Milo Sprague, Yun-Shik Lee","doi":"10.1364/JOSAB.409224","DOIUrl":null,"url":null,"abstract":"A terahertz metamaterial consisting of radiative slot antennas and subradiant complementary split-ring resonators exhibits plasmon induced opacity in a narrow spectral range due to the destructive interference between the bright and dark modes of the coupled oscillators. Femtosecond optical excitations instantly quench the mode coupling and plasmon oscillations, injecting photocarriers into the metamaterial. The plasmon resonances in the coupled metamaterial are transiently restored by intense terahertz pulses. The strong terahertz fields induce intervalley scattering and interband tunneling of the photocarries, and achieve significant reduction of the photocarrier mobility. The ultrafast dynamics of the nonlinear THz interactions reveals intricate interplay between photocarriers and plasmon oscillations. The high-field THz control of the plasmon oscillations implies potential applications to ultrahigh-speed plasmonics.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strong-field terahertz control of plasmon induced opacity in photoexcited metamaterial\",\"authors\":\"A. Mousavian, Z. J. Thompson, Byounghwak Lee, Alden N. Bradley, Milo Sprague, Yun-Shik Lee\",\"doi\":\"10.1364/JOSAB.409224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A terahertz metamaterial consisting of radiative slot antennas and subradiant complementary split-ring resonators exhibits plasmon induced opacity in a narrow spectral range due to the destructive interference between the bright and dark modes of the coupled oscillators. Femtosecond optical excitations instantly quench the mode coupling and plasmon oscillations, injecting photocarriers into the metamaterial. The plasmon resonances in the coupled metamaterial are transiently restored by intense terahertz pulses. The strong terahertz fields induce intervalley scattering and interband tunneling of the photocarries, and achieve significant reduction of the photocarrier mobility. The ultrafast dynamics of the nonlinear THz interactions reveals intricate interplay between photocarriers and plasmon oscillations. The high-field THz control of the plasmon oscillations implies potential applications to ultrahigh-speed plasmonics.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAB.409224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.409224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strong-field terahertz control of plasmon induced opacity in photoexcited metamaterial
A terahertz metamaterial consisting of radiative slot antennas and subradiant complementary split-ring resonators exhibits plasmon induced opacity in a narrow spectral range due to the destructive interference between the bright and dark modes of the coupled oscillators. Femtosecond optical excitations instantly quench the mode coupling and plasmon oscillations, injecting photocarriers into the metamaterial. The plasmon resonances in the coupled metamaterial are transiently restored by intense terahertz pulses. The strong terahertz fields induce intervalley scattering and interband tunneling of the photocarries, and achieve significant reduction of the photocarrier mobility. The ultrafast dynamics of the nonlinear THz interactions reveals intricate interplay between photocarriers and plasmon oscillations. The high-field THz control of the plasmon oscillations implies potential applications to ultrahigh-speed plasmonics.