利用点对相互信息生成相关和信息丰富的响应

Junya Takayama, Yuki Arase
{"title":"利用点对相互信息生成相关和信息丰富的响应","authors":"Junya Takayama, Yuki Arase","doi":"10.18653/v1/W19-4115","DOIUrl":null,"url":null,"abstract":"A sequence-to-sequence model tends to generate generic responses with little information for input utterances. To solve this problem, we propose a neural model that generates relevant and informative responses. Our model has simple architecture to enable easy application to existing neural dialogue models. Specifically, using positive pointwise mutual information, it first identifies keywords that frequently co-occur in responses given an utterance. Then, the model encourages the decoder to use the keywords for response generation. Experiment results demonstrate that our model successfully diversifies responses relative to previous models.","PeriodicalId":178445,"journal":{"name":"Proceedings of the First Workshop on NLP for Conversational AI","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Relevant and Informative Response Generation using Pointwise Mutual Information\",\"authors\":\"Junya Takayama, Yuki Arase\",\"doi\":\"10.18653/v1/W19-4115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequence-to-sequence model tends to generate generic responses with little information for input utterances. To solve this problem, we propose a neural model that generates relevant and informative responses. Our model has simple architecture to enable easy application to existing neural dialogue models. Specifically, using positive pointwise mutual information, it first identifies keywords that frequently co-occur in responses given an utterance. Then, the model encourages the decoder to use the keywords for response generation. Experiment results demonstrate that our model successfully diversifies responses relative to previous models.\",\"PeriodicalId\":178445,\"journal\":{\"name\":\"Proceedings of the First Workshop on NLP for Conversational AI\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on NLP for Conversational AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on NLP for Conversational AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

序列到序列模型倾向于在输入话语信息很少的情况下生成通用响应。为了解决这个问题,我们提出了一个神经模型来产生相关的信息响应。该模型结构简单,易于应用于已有的神经对话模型。具体来说,使用积极的点对点互信息,它首先识别出在给定话语的回答中经常同时出现的关键词。然后,该模型鼓励解码器使用关键字来生成响应。实验结果表明,相对于以前的模型,我们的模型成功地实现了响应的多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relevant and Informative Response Generation using Pointwise Mutual Information
A sequence-to-sequence model tends to generate generic responses with little information for input utterances. To solve this problem, we propose a neural model that generates relevant and informative responses. Our model has simple architecture to enable easy application to existing neural dialogue models. Specifically, using positive pointwise mutual information, it first identifies keywords that frequently co-occur in responses given an utterance. Then, the model encourages the decoder to use the keywords for response generation. Experiment results demonstrate that our model successfully diversifies responses relative to previous models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relevant and Informative Response Generation using Pointwise Mutual Information Energy-Based Modelling for Dialogue State Tracking DSTC7 Task 1: Noetic End-to-End Response Selection End-to-End Neural Context Reconstruction in Chinese Dialogue Insights from Building an Open-Ended Conversational Agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1