生物分子结构的对称刚体参数化

J. S. Kim, G. Chirikjian
{"title":"生物分子结构的对称刚体参数化","authors":"J. S. Kim, G. Chirikjian","doi":"10.1109/BIBM.2016.7822505","DOIUrl":null,"url":null,"abstract":"Assessing preferred relative rigid-body position and orientation is important in the description of biomolecular structures (such as proteins) and their interactions. For that purpose, techniques from the kinematics community are often used. In this paper, we review parameterization methods that are widely used to describe relative rigid body motions (in particular, orientations). Then we present the extended and updated review of a ‘symmetrical parameterization’ which was newly introduced in the kinematics community. This parameterization is useful in describing the relative biomolecular rigid body motions, where the parameters are symmetrical in the sense that the subunits of a complex biomolecular structure are described in the same way for the corresponding motion and its inverse. The properties of this new parameterization, singularity analysis and inverse kinematics, are also investigated in more detail. Finally the parameterization is applied to real biomolecular structures to show the efficacy of the symmetrical parameterization in the field of computational structural biology.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetrical rigid body parameterization for biomolecular structures\",\"authors\":\"J. S. Kim, G. Chirikjian\",\"doi\":\"10.1109/BIBM.2016.7822505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing preferred relative rigid-body position and orientation is important in the description of biomolecular structures (such as proteins) and their interactions. For that purpose, techniques from the kinematics community are often used. In this paper, we review parameterization methods that are widely used to describe relative rigid body motions (in particular, orientations). Then we present the extended and updated review of a ‘symmetrical parameterization’ which was newly introduced in the kinematics community. This parameterization is useful in describing the relative biomolecular rigid body motions, where the parameters are symmetrical in the sense that the subunits of a complex biomolecular structure are described in the same way for the corresponding motion and its inverse. The properties of this new parameterization, singularity analysis and inverse kinematics, are also investigated in more detail. Finally the parameterization is applied to real biomolecular structures to show the efficacy of the symmetrical parameterization in the field of computational structural biology.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在描述生物分子结构(如蛋白质)及其相互作用时,评估优选的相对刚体位置和方向是很重要的。为此,经常使用运动学社区的技术。在本文中,我们回顾了广泛用于描述相对刚体运动(特别是方向)的参数化方法。然后,我们对运动学界新引入的“对称参数化”进行了扩展和更新的综述。这种参数化在描述相对生物分子刚体运动时是有用的,其中参数是对称的,因为复杂生物分子结构的亚单位以相同的方式描述相应的运动及其逆。对这种新的参数化的性质、奇异性分析和逆运动学进行了更详细的研究。最后将该参数化方法应用于实际生物分子结构,验证了对称参数化方法在计算结构生物学领域的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symmetrical rigid body parameterization for biomolecular structures
Assessing preferred relative rigid-body position and orientation is important in the description of biomolecular structures (such as proteins) and their interactions. For that purpose, techniques from the kinematics community are often used. In this paper, we review parameterization methods that are widely used to describe relative rigid body motions (in particular, orientations). Then we present the extended and updated review of a ‘symmetrical parameterization’ which was newly introduced in the kinematics community. This parameterization is useful in describing the relative biomolecular rigid body motions, where the parameters are symmetrical in the sense that the subunits of a complex biomolecular structure are described in the same way for the corresponding motion and its inverse. The properties of this new parameterization, singularity analysis and inverse kinematics, are also investigated in more detail. Finally the parameterization is applied to real biomolecular structures to show the efficacy of the symmetrical parameterization in the field of computational structural biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1