基于变分自编码器的云计算虚拟机工作负荷预测方法

F. Abdullayeva
{"title":"基于变分自编码器的云计算虚拟机工作负荷预测方法","authors":"F. Abdullayeva","doi":"10.4018/IJSSSP.2021070103","DOIUrl":null,"url":null,"abstract":"The paper proposes a method for predicting the workload of virtual machines in the cloud infrastructure. Reconstruction probabilities of variational autoencoders were used to provide the prediction. Reconstruction probability is a probability criterion that considers the variability in the distribution of variables. In the proposed approach, the values of the reconstruction probabilities of the variational autoencoder show the workload level of the virtual machines. The results of the experiments showed that variational autoencoders gave better results in predicting the workload of virtual machines compared to simple deep neural networks. The generative characteristics of the variational autoencoders determine the workload level by the data reconstruction.","PeriodicalId":135841,"journal":{"name":"Int. J. Syst. Softw. Secur. Prot.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder\",\"authors\":\"F. Abdullayeva\",\"doi\":\"10.4018/IJSSSP.2021070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a method for predicting the workload of virtual machines in the cloud infrastructure. Reconstruction probabilities of variational autoencoders were used to provide the prediction. Reconstruction probability is a probability criterion that considers the variability in the distribution of variables. In the proposed approach, the values of the reconstruction probabilities of the variational autoencoder show the workload level of the virtual machines. The results of the experiments showed that variational autoencoders gave better results in predicting the workload of virtual machines compared to simple deep neural networks. The generative characteristics of the variational autoencoders determine the workload level by the data reconstruction.\",\"PeriodicalId\":135841,\"journal\":{\"name\":\"Int. J. Syst. Softw. Secur. Prot.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Syst. Softw. Secur. Prot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSSP.2021070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Syst. Softw. Secur. Prot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSSP.2021070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种预测云基础设施中虚拟机工作负载的方法。利用变分自编码器的重构概率进行预测。重构概率是一种考虑变量分布变异性的概率准则。在该方法中,变分自编码器的重构概率值反映了虚拟机的工作负载水平。实验结果表明,与简单的深度神经网络相比,变分自编码器在预测虚拟机工作负载方面具有更好的效果。变分自编码器的生成特性通过数据重构来决定工作负荷的高低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder
The paper proposes a method for predicting the workload of virtual machines in the cloud infrastructure. Reconstruction probabilities of variational autoencoders were used to provide the prediction. Reconstruction probability is a probability criterion that considers the variability in the distribution of variables. In the proposed approach, the values of the reconstruction probabilities of the variational autoencoder show the workload level of the virtual machines. The results of the experiments showed that variational autoencoders gave better results in predicting the workload of virtual machines compared to simple deep neural networks. The generative characteristics of the variational autoencoders determine the workload level by the data reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Light Weight Temper Resistance Client File in an External Memory for Remote User Authentication and Access Control Proposed Secure 3-Use Case Diagram A Novel Iterated Function System-Based Model for Coloured Image Encryption Formal Metamodeling for Secure Model-Driven Engineering Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1