R. Moura, V. G. Haase, J. B. Lopes-Silva, L. T. Batista, Fernanda Rocha de Freitas, J. Bahnmueller, K. Moeller
{"title":"阅读和书写单词和数字:相似点、不同点和含义","authors":"R. Moura, V. G. Haase, J. B. Lopes-Silva, L. T. Batista, Fernanda Rocha de Freitas, J. Bahnmueller, K. Moeller","doi":"10.1515/9783110661941-015","DOIUrl":null,"url":null,"abstract":"Literacy and numeracy are culturally acquired abilities that are well established as crucial for educational and vocational prospects (Parsons & Bynner, 1997; Ritchie & Bates, 2013; Romano et al., 2010). When investigating these abilities in children, researchers from educational and cognitive sciences often focus on the writing and reading of either words or numbers. Accordingly, these usually represent two independent lines of research. Nevertheless, in recent years there is increasing research interest into relevant commonalities between learning to read and write words as well as numbers (e.g., Lopes-Silva et al., 2016). It has been argued that efficient processing of words and numbers requires a partially overlapping cognitive architecture including basic perceptual abilities, attention, working memory (WM), verbal, visuo-spatial and visuo-constructional processing as well as graphomotor sequencing, among others (e.g., Collins & Laski, 2019; Geary, 2005). Over the last decades, researchers have mostly been focusing on either phonological processing as a cognitive precursor of reading and writing words (Castles & Coltheart, 2004) or on numerical magnitude understanding as the most important precursor of number processing (Siegler & Braithwaite, 2017). In this chapter, we aim at bringing together both lines of research by discussing the role of phonological and magnitude processing for the understanding of words and numbers, as well as interactions between these processes in more detail. In particular, we will address aspects of the structure and the acquisition of symbolic (both verbal and Arabic) codes in young children. Moreover, we will discuss similarities and specificities of both codes and how they acquire semantic meaning in early stages of human development. Furthermore, we will elaborate on the comorbidity between math and reading difficulties in light of the interaction between the development of symbolic codes for words and numbers. Finally, we will integrate these lines of argument","PeriodicalId":345296,"journal":{"name":"Diversity Dimensions in Mathematics and Language Learning","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reading and writing words and numbers: Similarities, differences, and implications\",\"authors\":\"R. Moura, V. G. Haase, J. B. Lopes-Silva, L. T. Batista, Fernanda Rocha de Freitas, J. Bahnmueller, K. Moeller\",\"doi\":\"10.1515/9783110661941-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Literacy and numeracy are culturally acquired abilities that are well established as crucial for educational and vocational prospects (Parsons & Bynner, 1997; Ritchie & Bates, 2013; Romano et al., 2010). When investigating these abilities in children, researchers from educational and cognitive sciences often focus on the writing and reading of either words or numbers. Accordingly, these usually represent two independent lines of research. Nevertheless, in recent years there is increasing research interest into relevant commonalities between learning to read and write words as well as numbers (e.g., Lopes-Silva et al., 2016). It has been argued that efficient processing of words and numbers requires a partially overlapping cognitive architecture including basic perceptual abilities, attention, working memory (WM), verbal, visuo-spatial and visuo-constructional processing as well as graphomotor sequencing, among others (e.g., Collins & Laski, 2019; Geary, 2005). Over the last decades, researchers have mostly been focusing on either phonological processing as a cognitive precursor of reading and writing words (Castles & Coltheart, 2004) or on numerical magnitude understanding as the most important precursor of number processing (Siegler & Braithwaite, 2017). In this chapter, we aim at bringing together both lines of research by discussing the role of phonological and magnitude processing for the understanding of words and numbers, as well as interactions between these processes in more detail. In particular, we will address aspects of the structure and the acquisition of symbolic (both verbal and Arabic) codes in young children. Moreover, we will discuss similarities and specificities of both codes and how they acquire semantic meaning in early stages of human development. Furthermore, we will elaborate on the comorbidity between math and reading difficulties in light of the interaction between the development of symbolic codes for words and numbers. Finally, we will integrate these lines of argument\",\"PeriodicalId\":345296,\"journal\":{\"name\":\"Diversity Dimensions in Mathematics and Language Learning\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diversity Dimensions in Mathematics and Language Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110661941-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity Dimensions in Mathematics and Language Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110661941-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reading and writing words and numbers: Similarities, differences, and implications
Literacy and numeracy are culturally acquired abilities that are well established as crucial for educational and vocational prospects (Parsons & Bynner, 1997; Ritchie & Bates, 2013; Romano et al., 2010). When investigating these abilities in children, researchers from educational and cognitive sciences often focus on the writing and reading of either words or numbers. Accordingly, these usually represent two independent lines of research. Nevertheless, in recent years there is increasing research interest into relevant commonalities between learning to read and write words as well as numbers (e.g., Lopes-Silva et al., 2016). It has been argued that efficient processing of words and numbers requires a partially overlapping cognitive architecture including basic perceptual abilities, attention, working memory (WM), verbal, visuo-spatial and visuo-constructional processing as well as graphomotor sequencing, among others (e.g., Collins & Laski, 2019; Geary, 2005). Over the last decades, researchers have mostly been focusing on either phonological processing as a cognitive precursor of reading and writing words (Castles & Coltheart, 2004) or on numerical magnitude understanding as the most important precursor of number processing (Siegler & Braithwaite, 2017). In this chapter, we aim at bringing together both lines of research by discussing the role of phonological and magnitude processing for the understanding of words and numbers, as well as interactions between these processes in more detail. In particular, we will address aspects of the structure and the acquisition of symbolic (both verbal and Arabic) codes in young children. Moreover, we will discuss similarities and specificities of both codes and how they acquire semantic meaning in early stages of human development. Furthermore, we will elaborate on the comorbidity between math and reading difficulties in light of the interaction between the development of symbolic codes for words and numbers. Finally, we will integrate these lines of argument