Kevin Borders, Grant Clark, S. Hariharan, T. Wilson
{"title":"远程线路电源的最佳实践指南","authors":"Kevin Borders, Grant Clark, S. Hariharan, T. Wilson","doi":"10.1109/intlec.2017.8214131","DOIUrl":null,"url":null,"abstract":"Telecommunications networks have been transitioning from a centralized to distributed architecture. With Fiber extending deeper into the wireline network and Small Cells becoming a more prevalent means for targeting hard-to-reach subscribers, there has been significant growth in the number of network elements located far from the central switching office. The sheer quantity of network devices increases the number of locations requiring power. Conventional power solutions, where AC is delivered by the utility to the site and then converted to the proper voltage for the equipment, has proven to be capital-intensive and expensive to maintain (especially if battery backup is required). Moreover, deployment schedules are complicated by the need to manage multiple electrical utilities supplying AC power to the sites. This paper provides an overview of how to plan, engineer, and deploy a remote line powered (RLP) network. It provides details on how RLP works, how far it can reach, and how to qualify cable pairs for use in these circuits. The paper concludes with a summary of best practices for deploying Remote Line Power.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best practices guide for remote line power\",\"authors\":\"Kevin Borders, Grant Clark, S. Hariharan, T. Wilson\",\"doi\":\"10.1109/intlec.2017.8214131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Telecommunications networks have been transitioning from a centralized to distributed architecture. With Fiber extending deeper into the wireline network and Small Cells becoming a more prevalent means for targeting hard-to-reach subscribers, there has been significant growth in the number of network elements located far from the central switching office. The sheer quantity of network devices increases the number of locations requiring power. Conventional power solutions, where AC is delivered by the utility to the site and then converted to the proper voltage for the equipment, has proven to be capital-intensive and expensive to maintain (especially if battery backup is required). Moreover, deployment schedules are complicated by the need to manage multiple electrical utilities supplying AC power to the sites. This paper provides an overview of how to plan, engineer, and deploy a remote line powered (RLP) network. It provides details on how RLP works, how far it can reach, and how to qualify cable pairs for use in these circuits. The paper concludes with a summary of best practices for deploying Remote Line Power.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/intlec.2017.8214131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/intlec.2017.8214131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Telecommunications networks have been transitioning from a centralized to distributed architecture. With Fiber extending deeper into the wireline network and Small Cells becoming a more prevalent means for targeting hard-to-reach subscribers, there has been significant growth in the number of network elements located far from the central switching office. The sheer quantity of network devices increases the number of locations requiring power. Conventional power solutions, where AC is delivered by the utility to the site and then converted to the proper voltage for the equipment, has proven to be capital-intensive and expensive to maintain (especially if battery backup is required). Moreover, deployment schedules are complicated by the need to manage multiple electrical utilities supplying AC power to the sites. This paper provides an overview of how to plan, engineer, and deploy a remote line powered (RLP) network. It provides details on how RLP works, how far it can reach, and how to qualify cable pairs for use in these circuits. The paper concludes with a summary of best practices for deploying Remote Line Power.