利用数据包到达间隔时间的高阶统计信息进行瓶颈检测

P. Varga, Gergely Kún
{"title":"利用数据包到达间隔时间的高阶统计信息进行瓶颈检测","authors":"P. Varga, Gergely Kún","doi":"10.1109/E2EMON.2005.1564476","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach for determining bottleneck link locations in a network. The considered measurement model is passive monitoring of a backbone link. We analyze the properties of packet interarrival time (PIT) distribution functions of network segments and make decisions whether the extracted properties of a link suggest bottleneck behavior or not. The correlation between bottleneck behavior and packet interarrival time distribution is demonstrated through simulations featuring tighter and tighter bottleneck connections. Locating shared bottlenecks with passive monitoring requires effective metrics for distinguishing seriously congested links from normal or underutilized connections. The current paper presents the third and fourth central moments (skewness and kurtosis, respectively) of PIT distribution as possible and promising metrics for bottleneck detection. According to the simulation results, kurtosis of PITs is found to be a powerful measure of bottleneck behavior. This is further validated by investigation of real measurement data.","PeriodicalId":354965,"journal":{"name":"Workshop on End-to-End Monitoring Techniques and Services, 2005.","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Utilizing higher order statistics of packet interarrival times for bottleneck detection\",\"authors\":\"P. Varga, Gergely Kún\",\"doi\":\"10.1109/E2EMON.2005.1564476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new approach for determining bottleneck link locations in a network. The considered measurement model is passive monitoring of a backbone link. We analyze the properties of packet interarrival time (PIT) distribution functions of network segments and make decisions whether the extracted properties of a link suggest bottleneck behavior or not. The correlation between bottleneck behavior and packet interarrival time distribution is demonstrated through simulations featuring tighter and tighter bottleneck connections. Locating shared bottlenecks with passive monitoring requires effective metrics for distinguishing seriously congested links from normal or underutilized connections. The current paper presents the third and fourth central moments (skewness and kurtosis, respectively) of PIT distribution as possible and promising metrics for bottleneck detection. According to the simulation results, kurtosis of PITs is found to be a powerful measure of bottleneck behavior. This is further validated by investigation of real measurement data.\",\"PeriodicalId\":354965,\"journal\":{\"name\":\"Workshop on End-to-End Monitoring Techniques and Services, 2005.\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on End-to-End Monitoring Techniques and Services, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E2EMON.2005.1564476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on End-to-End Monitoring Techniques and Services, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E2EMON.2005.1564476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种确定网络中瓶颈链路位置的新方法。考虑的测量模型是对骨干链路的被动监测。我们分析了网段间到达时间(PIT)分布函数的性质,并决定提取的链路属性是否表明瓶颈行为。通过瓶颈连接越来越紧密的仿真,证明了瓶颈行为与数据包到达时间分布之间的相关性。使用被动监控定位共享瓶颈需要有效的度量来区分严重拥塞的链路与正常或未充分利用的连接。本文提出PIT分布的第三和第四个中心矩(分别是偏度和峰度)作为瓶颈检测的可能和有前途的指标。仿真结果表明,坑道峰度是衡量瓶颈行为的有力指标。通过对实际测量数据的研究,进一步验证了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing higher order statistics of packet interarrival times for bottleneck detection
This paper introduces a new approach for determining bottleneck link locations in a network. The considered measurement model is passive monitoring of a backbone link. We analyze the properties of packet interarrival time (PIT) distribution functions of network segments and make decisions whether the extracted properties of a link suggest bottleneck behavior or not. The correlation between bottleneck behavior and packet interarrival time distribution is demonstrated through simulations featuring tighter and tighter bottleneck connections. Locating shared bottlenecks with passive monitoring requires effective metrics for distinguishing seriously congested links from normal or underutilized connections. The current paper presents the third and fourth central moments (skewness and kurtosis, respectively) of PIT distribution as possible and promising metrics for bottleneck detection. According to the simulation results, kurtosis of PITs is found to be a powerful measure of bottleneck behavior. This is further validated by investigation of real measurement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Routing dynamics measurement and detection for next step Internet signaling protocol nCap: wire-speed packet capture and transmission CARENA: a tool to capture and replay Web navigation sessions Autonomous end to end QoS monitoring Management interface for programmable end-to-end 'data connectivity' provisioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1