用于文档分类的分层文本-标签集成关注网络

Changjin Gong, Kaize Shi, Zhendong Niu
{"title":"用于文档分类的分层文本-标签集成关注网络","authors":"Changjin Gong, Kaize Shi, Zhendong Niu","doi":"10.1145/3341069.3342987","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks (RNN) and convolutional neural networks (CNN) have been extensively used on text classification to capture the local and long-range dependencies. Recent work has demonstrated the superiority of self-attention networks (SAN) owing to their highly parallelizable computation and excellent performance. However, SAN has difficulty capturing meaningful semantic relationships over very long sequences, and the memory requirement grows rapidly in line with the sequence length. To solve these limitations of SAN in processing long document sequence, this paper proposes four novel ideas and build a hierarchical text-label integrated attention network(HLAN). Firstly, a hierarchical architecture is introduced to map the hierarchy of document, which effectively shortens the sequence length of each process. Secondly, the attention weights are calculated in the joint embedding space of text and label. Thirdly, a multi-head soft attention is proposed to compress the sequence encoded by self-attention into a single vector. Finally, a loss term called class loss is given and combined with cross entropy loss. HLAN achieves competitive results over the compared strong baseline methods on 4 out of 5 benchmark datasets, which verifies the effectiveness of HLAN for document classification, in terms of both accuracy and memory requirement.","PeriodicalId":411198,"journal":{"name":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Text-Label Integrated Attention Network for Document Classification\",\"authors\":\"Changjin Gong, Kaize Shi, Zhendong Niu\",\"doi\":\"10.1145/3341069.3342987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks (RNN) and convolutional neural networks (CNN) have been extensively used on text classification to capture the local and long-range dependencies. Recent work has demonstrated the superiority of self-attention networks (SAN) owing to their highly parallelizable computation and excellent performance. However, SAN has difficulty capturing meaningful semantic relationships over very long sequences, and the memory requirement grows rapidly in line with the sequence length. To solve these limitations of SAN in processing long document sequence, this paper proposes four novel ideas and build a hierarchical text-label integrated attention network(HLAN). Firstly, a hierarchical architecture is introduced to map the hierarchy of document, which effectively shortens the sequence length of each process. Secondly, the attention weights are calculated in the joint embedding space of text and label. Thirdly, a multi-head soft attention is proposed to compress the sequence encoded by self-attention into a single vector. Finally, a loss term called class loss is given and combined with cross entropy loss. HLAN achieves competitive results over the compared strong baseline methods on 4 out of 5 benchmark datasets, which verifies the effectiveness of HLAN for document classification, in terms of both accuracy and memory requirement.\",\"PeriodicalId\":411198,\"journal\":{\"name\":\"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341069.3342987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341069.3342987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

递归神经网络(RNN)和卷积神经网络(CNN)被广泛用于文本分类,以捕获局部和远程依赖关系。近年来的研究已经证明了自关注网络(SAN)的优越性,因为它具有高度并行化的计算能力和优异的性能。然而,SAN很难在非常长的序列中捕获有意义的语义关系,并且内存需求随着序列长度的增长而迅速增长。为了解决SAN在处理长文档序列方面的局限性,本文提出了四种新的思想,并构建了分层文本标签集成注意网络(HLAN)。首先,引入层次结构来映射文档的层次结构,有效地缩短了每个过程的序列长度;其次,在文本和标签的联合嵌入空间中计算关注权;第三,提出了一种多头软注意算法,将自注意编码的序列压缩为单个向量。最后,给出了一类损耗项,并与交叉熵损耗相结合。HLAN在5个基准数据集中的4个上取得了与强基线方法相比较的结果,这验证了HLAN在文档分类的准确性和内存需求方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Text-Label Integrated Attention Network for Document Classification
Recurrent neural networks (RNN) and convolutional neural networks (CNN) have been extensively used on text classification to capture the local and long-range dependencies. Recent work has demonstrated the superiority of self-attention networks (SAN) owing to their highly parallelizable computation and excellent performance. However, SAN has difficulty capturing meaningful semantic relationships over very long sequences, and the memory requirement grows rapidly in line with the sequence length. To solve these limitations of SAN in processing long document sequence, this paper proposes four novel ideas and build a hierarchical text-label integrated attention network(HLAN). Firstly, a hierarchical architecture is introduced to map the hierarchy of document, which effectively shortens the sequence length of each process. Secondly, the attention weights are calculated in the joint embedding space of text and label. Thirdly, a multi-head soft attention is proposed to compress the sequence encoded by self-attention into a single vector. Finally, a loss term called class loss is given and combined with cross entropy loss. HLAN achieves competitive results over the compared strong baseline methods on 4 out of 5 benchmark datasets, which verifies the effectiveness of HLAN for document classification, in terms of both accuracy and memory requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomaly Detection Method for Chiller System of Supercomputer A Strategy Integrating Iterative Filtering and Convolution Neural Network for Time Series Feature Extraction Multi-attending Memory Network for Modeling Multi-turn Dialogue Time-varying Target Characteristic Analysis of Dual Stealth Aircraft Formation Bank Account Abnormal Transaction Recognition Based on Relief Algorithm and BalanceCascade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1