BlueWonder的能源意识调度研究

V. Elisseev, John Baker, Neil Morgan, L. Brochard, W. T. Hewitt
{"title":"BlueWonder的能源意识调度研究","authors":"V. Elisseev, John Baker, Neil Morgan, L. Brochard, W. T. Hewitt","doi":"10.1109/E2SC.2016.14","DOIUrl":null,"url":null,"abstract":"Power consumption of the world's leading supercomputers is of the order of tens of MegaWatts (MW). Therefore, energy efficiency and power management of High Performance Computing (HPC) systems are among the main goals of the HPC community. This paper presents our study of managing energy consumption of supercomputers with the use of the energy aware workload management software IBM Platform Load Sharing Facility (LSF). We analyze energy consumption and workloads of the IBM NextScale Cluster, BlueWonder, located at the Daresbury Laboratory, STFC, UK. We describe power management algorithms implemented as Energy Aware Scheduling (EAS) policies in the IBM Platform LSF software. We show the effect of the power management policies on supercomputer efficiency and power consumption using experimental as well as simulated data from scientific workloads on the BlueWonder supercomputer. We observed energy saving of up to 12% from EAS policies.","PeriodicalId":424743,"journal":{"name":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Energy Aware Scheduling Study on BlueWonder\",\"authors\":\"V. Elisseev, John Baker, Neil Morgan, L. Brochard, W. T. Hewitt\",\"doi\":\"10.1109/E2SC.2016.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power consumption of the world's leading supercomputers is of the order of tens of MegaWatts (MW). Therefore, energy efficiency and power management of High Performance Computing (HPC) systems are among the main goals of the HPC community. This paper presents our study of managing energy consumption of supercomputers with the use of the energy aware workload management software IBM Platform Load Sharing Facility (LSF). We analyze energy consumption and workloads of the IBM NextScale Cluster, BlueWonder, located at the Daresbury Laboratory, STFC, UK. We describe power management algorithms implemented as Energy Aware Scheduling (EAS) policies in the IBM Platform LSF software. We show the effect of the power management policies on supercomputer efficiency and power consumption using experimental as well as simulated data from scientific workloads on the BlueWonder supercomputer. We observed energy saving of up to 12% from EAS policies.\",\"PeriodicalId\":424743,\"journal\":{\"name\":\"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E2SC.2016.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E2SC.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

世界领先的超级计算机的功耗在几十兆瓦(MW)的数量级。因此,高性能计算(HPC)系统的能源效率和电源管理是HPC社区的主要目标之一。本文介绍了我们使用能源感知工作负载管理软件IBM平台负载共享设施(LSF)管理超级计算机能耗的研究。我们分析了位于英国STFC达斯伯里实验室的IBM NextScale集群BlueWonder的能耗和工作负载。我们将电源管理算法描述为IBM Platform LSF软件中的能源感知调度(Energy Aware Scheduling, EAS)策略。我们使用来自BlueWonder超级计算机上的科学工作负载的实验和模拟数据,展示了电源管理策略对超级计算机效率和功耗的影响。我们观察到通过EAS政策可以节省高达12%的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Aware Scheduling Study on BlueWonder
Power consumption of the world's leading supercomputers is of the order of tens of MegaWatts (MW). Therefore, energy efficiency and power management of High Performance Computing (HPC) systems are among the main goals of the HPC community. This paper presents our study of managing energy consumption of supercomputers with the use of the energy aware workload management software IBM Platform Load Sharing Facility (LSF). We analyze energy consumption and workloads of the IBM NextScale Cluster, BlueWonder, located at the Daresbury Laboratory, STFC, UK. We describe power management algorithms implemented as Energy Aware Scheduling (EAS) policies in the IBM Platform LSF software. We show the effect of the power management policies on supercomputer efficiency and power consumption using experimental as well as simulated data from scientific workloads on the BlueWonder supercomputer. We observed energy saving of up to 12% from EAS policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Investigation of Mobile System Features Potentially Relevant to HPC Neural Network-Based Task Scheduling with Preemptive Fan Control Characterizing Power and Performance of GPU Memory Access Power-Constrained Performance Scheduling of Data Parallel Tasks A Unified Platform for Exploring Power Management Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1